Bài 15: Cho nhọn, đường cao AH. Vẽ các điểm D, E sao cho các đường thẳng AB, AC lần lượt là trung trực của các đoạn thẳng HD, HE.
a) Chứng minh rằng AD = AE b) Gọi M, N lần lượt là giao điểm của đường thẳng DE với AB, AC. Chứng minh rằng HA là tia phân giác của góc MHN c) Chứng minh rằng góc DAE = góc 2MHB d) Chứng minh rằng ba đường thẳng AH, BN và CM đồng quy tại một điểm.Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) ta co : goc BHI+goc IHA =90 ( 2 goc ke phu)
----> goc BHI =90- goc IHA
ma goc IHA = goc ADI ( tam giac ADI = tam giac AHI)
nen goc BHI=90- goc ADI (1)
ta co :
goc ADE = (180- goc DAE):2 ( tam giac ADE can tai A)
ma goc DAE= 2. goc BAC ( cm cau b)
nen goc ADE = (180-2.goc BAC):2= 90-goc BAC
---> goc BAC =90- goc ADE (2)
tu (1) va (2) suy ra goc BHI= goc BAC
Cho tam giác ABC nhọn, đường cao AH. Vẽ điểm D và E sao cho các đường thẳng AB, Ac lad các đường trung trực của DH và EH. Lấy điểm M, N lần lượt là giao điểm của DE với AB và Ac
a) Chứng minh AB= Ae
b)Chứng minh góc DAE bằng 2 lần góc MHB
c)Chứng minh AH, BN, CM đồng quy tại 1 điểm
UhkbijhihguhftfWegvhhhhvhiggyghkbhijmkjiphfuhfygggubh