Tìm số nguyên x, y biết: \(\dfrac{x}{7}+\dfrac{1}{y}=\dfrac{-1}{14}\) (biết y ko bằng 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{7}+\dfrac{1}{y}=-\dfrac{1}{14}\Leftrightarrow\dfrac{xy+7}{7y}=\dfrac{\dfrac{-y}{2}}{7y}\\ \Leftrightarrow xy+7=-\dfrac{y}{2}\\ 2xy+14=-y\\ y\left(2x+1\right)=-14\)
Vì y,x là số nguyên nên 2x-1 là ước lẻ của -14 = {1;-1;7;-7}
Ta có bảng sau:
2x+1 | 1 | -1 | 7 | -7 |
x | 0 | -1 | 3 | -4 |
y | -14 | 14 | -2 | 2 |
Vậy (x,y) thuộc {(0,-14);(-1,14);(3,-2);(-4,2)}
vậy x và y e (-1,14),(0,-14),(3,-2),(-4,2)
Vì x/7+1/y=-1/14
=xy+7/7y=2/7y
xy+7=y/-2 (y/-2=-y/2)
2yx+14=-y
y.(2x+1)=-14
X và Y là số nguyên
2x-1 ước số lẻ của -14 :-7,-1,1,7
X =0,-1,3,-4
Y=-14,-2,2,14
a, \(\dfrac{x}{2}=-\dfrac{5}{y}\Rightarrow xy=-10\Rightarrow x;y\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
x | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
y | -10 | 10 | -5 | 5 | -2 | 2 | -1 | 1 |
c, \(\dfrac{3}{x-1}=y+1\Rightarrow\left(y+1\right)\left(x-1\right)=3\Rightarrow x-1;y+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x - 1 | 1 | -1 | 3 | -3 |
y + 1 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 4 | -2 |
y | 2 | -4 | 0 | -2 |
b: =>xy=12
\(\Leftrightarrow\left(x,y\right)\in\left\{\left(12;1\right);\left(6;2\right);\left(4;3\right)\right\}\)
Bài 2:
\(a,\dfrac{2}{x}=\dfrac{x}{8}\\ \Rightarrow x.x=8.2\\ \Rightarrow x^2=16\\ \Rightarrow x=\pm4\)
\(b,\dfrac{2x-9}{240}=\dfrac{39}{80}\\ \Rightarrow80\left(2x-9\right)=240.39\\ \Rightarrow160x-720=9360\\ \Rightarrow160x=10080\\ \Rightarrow x=63\)
\(c,\dfrac{x-1}{9}=\dfrac{8}{3}\\ \Rightarrow3\left(x-1\right)=8.9\\ \Rightarrow3\left(x-1\right)=72\\ \Rightarrow x-1=24\\ \Rightarrow x=25\)
b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)
Đặt \(x=15k;y=20k;z=24k\)
Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
\(a,\dfrac{x}{5}=\dfrac{-18}{10}\\ \Rightarrow x=-\dfrac{18}{10}.5\\ \Rightarrow x=-9\\ b,\dfrac{6}{x-1}=\dfrac{-3}{7}\\ \Rightarrow6.7=-3\left(x-1\right)\\ \Rightarrow42=-3x+3\\ \Rightarrow42+3x-3=0\\ \Rightarrow3x+39=0\\ \Rightarrow3x=-39\\ \Rightarrow x=-13\\ c,\dfrac{y-3}{12}=\dfrac{3}{y-3}\\ \Rightarrow\left(y-3\right)^2=36\\ \Rightarrow\left[{}\begin{matrix}y-2=6\\y-2=-6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}y=8\\y=-4\end{matrix}\right.\)
\(d,\dfrac{x}{25}=\dfrac{-5}{x^2}\\ \Rightarrow x^3=-125\\ \Rightarrow x^3=\left(-5\right)^3\\ \Rightarrow x=-5\)
Bài 4:
a) \(\dfrac{2.7.13}{26.35}=\dfrac{2.7.13}{13.2.7.5}=\dfrac{1}{5}\)
b) \(\dfrac{23.5-23}{4-27}=\dfrac{23.\left(5-1\right)}{-23}=\dfrac{23.4}{-23}=-4\)
c) \(\dfrac{2130-15}{3550-25}=\dfrac{2115}{3525}=\dfrac{3}{5}\)
`1/x-1/y=2`
`đk:x,y ne 0`
Nhân 2 vế với `xy ne 0` ta có:
`y-x=2xy`
`=>2y-2x=4xy`
`=>4xy-2x=2y`
`=>2x(2y-1)=2y-1+1`
`=>(2y-1)(2x-1)=1`
Vì `x,y ne 0=>2x-1,2y-1 ne -1`
`=>2x-1=2y-1=1`
`=>x=y=1`
\(\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{2}\Leftrightarrow\dfrac{x-y}{xy}=\dfrac{1}{2}\)
do x,y nguyên nên:\(\left\{{}\begin{matrix}x-1=1\\x.y=2\end{matrix}\right.\)
ta có :2=1.2
mã-y=1⇒x>y⇒x=2,y=1
=>(xy+7)/7y=-1/14
=>xy+7=-1/2y
=>2xy+14=y
=>y(2x-1)=-14
=>(y;2x-1) thuộc {(-14;1); (14;-1); (-2;7); (2;-7)}
=>(y,x) thuộc {(-14;1); (14;0); (-2;4); (2;-3)}