4 có phải là nghiệm của đa thức 2x²-4x-15 không?Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giá trị của đa thức x3 – 4x tại x = -2 là: (-2)3 – 4.( - 2) = – 8 + 8 = 0
Giá trị của đa thức x3 – 4x tại x = 0 là: 03 – 4.0 = 0 – 0 = 0
Giá trị của đa thức x3 – 4x tại x = 2 là: 23 – 4.2 = 8 – 8 = 0
Vậy x = -2; x = 0 và x = 2 có phải là các nghiệm của đa thức x3 – 4x
( vì tại các giá trị đó của biến, đa thức có giá trị bằng 0)
\(\Leftrightarrow x^3-4x=0\\ \Leftrightarrow x\left(x^2-4\right)=0\\ \Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy tập nghiệm của pt \(S=\left\{0;2;-2\right\}\)
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)
\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)
vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
c: \(P\left(-1\right)=-3-5-4+2+6+4=0\)
Vậy: x=-1 là nghiệm của P(x)
\(Q\left(-1\right)=4+1+3+2-7+1=4< >0\)
=>x=-1 không là nghiệm của Q(x)
Lời giải:
a.
$P(x)=2x^4+(x^3-5x^3)+2x^2+(-2x+x)+1$
$=2x^4-4x^3+2x^2-x+1$
b)
$P(0)=2.0^4-4.0^3+2.0^2-0+1=1$
$P(1)=2-4+2-1+1=0$
c.
$P(1)=0$ (theo phần b) nên $x=1$ là nghiệm của đa thức $P(x)$
$P(-1)=2+4+2+1+1=10\neq 0$ nên $x=-1$ không là nghiệm của đa thức $P(x)$
c. x = 3, x = -3 có là nghiệm của N(x) vì N(3) = N(-3) = 0 (0.5 điểm)
Thay 4 vào đa thức ta có
2.42 -4. 4 -15 = 2.16- 4.4 - 15 = 1
1#0
Vậy 4 không phải là nghiệm của đa thức