Nêu các bướcchứng minh định lý Pytago ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pain Thiên Đạoko bt đừng trả lời ok mà ai chẳng bt là có pytago đảo cód đứa sống ngoài ngân hà ms ko bt
Trả lời : Trong toán học, định lý Pytago (còn gọi là định lý Pythagoras theo tiếng Anh) là một liên hệ căn bản trong hình học Euclid giữa ba cạnh của một tam giác vuông. Định lý phát biểu rằng bình phương cạnh huyền (cạnh đối diện với góc vuông) bằng tổng bình phương của hai cạnh còn lại.
\(\downarrow\)
Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương hai cạnh góc vuông.
∆ABC vuông tại A.
=> BC2=AB2+AC2
Học tốt
Link đây bạn xem thử :
http://www.vnmath.com/2012/02/chung-minh-inh-li-pi-ta-go-bang-nhieu.html
. Định lí Pytago
Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương hai cạnh góc vuông.
∆ABC vuông tại A.
=> BC2=AB2+AC2
Định lí Pytago: Trong tam giác vuông, bình phương cạnh huyền bằng tổng các bình phương hai cạnh góc vuông
Định lí Pytago đảo: Nếu một tam giác có bình phương một cạnh bằng tổng các bình phương hai cạnh còn lại thì tam giác đó vuông
tk
Nếu một tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông.
Định lý Pytago được sử dụng cho loại tam giác vuông.
_Bình phương cạnh huyền (cạnh đối diện với góc vuông) bằng tổng bình phương của hai cạnh còn lại.
CÔNG THỨC :
\(^{a^2+b^2=c^2}\) (với c là độ dài cạnh huyền và a và b là độ dài hai cạnh góc vuông hay còn gọi là cạnh kề.)
k cho mk nha!Hok tốt !!!
Theo định lý Pytago ta có:
\(AB^2=BH^2+AH^2\)
\(AC^2=CH^2+AH^2\)
Vì \(BH< CH\Leftrightarrow BH^2< CH^2\Leftrightarrow BH^2+AH^2< CH^2+AH^2\)
\(\Rightarrow AB^2< AC^2\Rightarrow AB< AC\)
=> đpcm
Dùng phản chứng:
- Giả sử AC < A'C'. Khi đó theo chứng minh câu a) ta có BC < B'C'. Điều này không đúng với giả thiết BC > B'C'.
Giả sử AC = A'C'. Khi đó ta có ΔABC = ΔA'B'C' (c.g.c). Suy ra BC = B'C'.
Điều này cũng không đúng với giả thiết BC > B'C'. Vậy ta phải có AC > A'C'.
(Nếu sử dụng định lý Pytago thì có thể giải bài toán sau)
Trong tam giác vuông ABC có BC 2= AB 2+ AC 2 (1)
Trong tam giác vuông A'B'C' có B'C' 2= A'B' 2+ A'C' 2 (2)
Theo giả thiết AB = A'B' nên từ (1) và (2) ta có:
- Nếu AC > A'C' thì AC 2 > A'C' 2, suy ra BC 2 > B'C' 2 hay BC > B'C'
- Nếu BC > B'C' thì BC 2 > B'C' 2, suy ra AC 2 > A'C' 2 hay AC > A'C'.
Thưa chị, có nhiều cách để chứng minh định lý Py-ta-go:
Cách 1 (cũng là cách đơn giản nhất)
Trong hình vẽ này, theo hệ thức lượng trong tam giác vuông, ta có \(\left\{{}\begin{matrix}AB^2=BC.BH\\AC^2=BC.CH\end{matrix}\right.\)\(\Rightarrow AB^2+AC^2=BC.BH+BC.CH=BC\left(BH+CH\right)=BC^2\)(đpcm)
Cách 2: Diện tích hình thang ACED có thể tính theo 2 cách:
1: Nửa tổng 2 đáy nhân với chiều cao: \(\dfrac{1}{2}\left(b+c\right)\left(b+c\right)=\dfrac{1}{2}\left(b+c\right)^2\)2: Tổng các diện tích của 3 tam giác \(\dfrac{1}{2}a^2+\dfrac{1}{2}bc+\dfrac{1}{2}bc=\dfrac{1}{2}a^2+bc\)
Do đó \(\dfrac{1}{2}\left(b+c\right)^2=\dfrac{1}{2}a^2+bc\) hay \(\dfrac{1}{2}\left(b^2+c^2+2bc\right)=\dfrac{1}{2}a^2+bc\) hay \(\dfrac{1}{2}\left(b^2+c^2\right)+bc=\dfrac{1}{2}a^2+bc\) hay \(b^2+c^2=a^2\) (đpcm)
Cách 3: Ta sắp xếp lại 4 tam giác vuông nhỏ như sau:
Vậy ta hoàn toàn có thể suy ra được \(a^2=b^2+c^2\)
Còn nhiều cách nữa nhưng em không liệt kê hết ở đây được đâu ạ.
Cách 1: Chứng minh của E. A. Coolidge
Cách chứng minh này xuất hiện trong cuốn sách về các vấn đề kinh điển thuộc học thuyết Pitago của tác giả Elisha Scott Loomis, được xuất bản lần đầu tiên bởi Hội đồng giáo viên quốc gia của môn toán học, vào năm 1927. Thật đáng tiếc, quyển sách này hiện nay không được xuất bản nữa, trong cuốn sách này có tới trên 300 cách chứng minh định lý Pitago, trong đó, có nhiều cách chứng minh tương tự nhau, và tất cả các cách chứng minh nổi tiếng đều có trong cuốn sách của Loomis.
Cách chứng minh dưới đây thì tương tự như cách chứng minh của Bhaskara trong phần “Behold!” đã giới thiệu ở bài trước. Cách chứng minh này được đăng trên tạp trí giáo dục, xuất bản hàng ngày, và tác giả của nó là cô E. A. Coolidge - là một người mù.
Dựng hình và kiểm tra
1. Vẽ một tam giác vuông và các hình vuông trên các cạnh của nó (dùng công cụ custom)
2. Kéo dài tia HA, lấy điểm A’ đối xứng với điểm H qua A bằng cách :
+ Chọn đoạn HA và điểm A
+ Chọn menu Transform --> Rotate --> degrees =180
3. Vẽ một đường thẳng đi qua điểm B và vuông góc với đoạn AA’, Vẽ điểm giao K của 2 đường này.
( Hình bên minh họa cho các bước từ 1 đến 3)
4. Vẽ hình vuông A’KLM.
(Sử dụng công cụ Custom tool như đã giới thiệu ở bài 1)
5. Vẽ Đoạn BK, GM, FL.
6. Làm ẩn đi đường BK.
7. Tô màu cho 4 mảnh trong hình vuông trên cạnh huyền.
8. Đánh dấu vectơ EJ và dịch chuyển 4 đỉnh và 4 cạnh của hình vuông BCDE theo vectơ này (để được hình vuông bên dưới hình vuông trên cạnh b có diện tích bằng diện tích hình vuông BCDE )
+ Đánh dấu theo thứ tự điểm E, J
+ Chọn menu Transform --> Mark vector
+ Đánh dấu 4 cạnh và 4 đỉnh của hình vuông BCDE
+ Chọn vào Menu Transform --> Translate.
9. Như vậy miền diện tích trên cạnh b bây giờ là a2 + b2 . Sử dụng công cụ Translator để di chuyển các các mảnh là bản sao của các mảnh trong hình
vuông trên cạnh huyền vào trong miền có diện tích a2 + b2 trên cạnh b.
Chú ý:
- Hãy thử thay đổi tam giác của bạn, và quan sát xem các mảnh tương ứng còn lại có bằng nhau nữa không.?
- Chú ý rằng, trong trương hợp dựng hình như thế này cạnh b cần phải luôn được giữ là cạnh bên dài hơn nếu không thì sự dựng hình như trên sẽ bị sai.
- Trường hợp đặc biệt trước khi việc dựng hình bi sai là trương hợp cạnh b dài bằng cạnh a thì hình vuông A’KLM biến mất.
- Bạn hãy giải thích xem tại sao với cách làm trên các mảnh có thể xếp vừa khít với miền diện tích trên cạnh b..
Cách 2: Chứng minh của Ann Condit
Đây cũng là một cách chứng minh được giới thiệu trong cuốn sách của Elisha Scott Loomis. Ann Condit nghĩ ra cách chứng minh này vào năm 1938 khi cô mới 16 tuổi và là sinh viên của trường trung học ở miền nam Ấn Độ.
Dựng hình và kiểm tra
1. Dựng đoạn thẳng AB.
2. Vẽ trung điểm D của đoạn thẳng này
3. Vẽ đường tròn bán kính DA.
4. Vẽ đoạn BC và AC , với C là một điểm nằm trên đường tròn. Như vvậy ta đã dựng được tam giác vuông ABC vuông tại C.
5. Vẽ các hình vuông trên các cạnh của tam giác vuông ABC.
6. Vẽ các trung điểm L, M, N của các cạnh phía ngoài của các hình vuông.
7. Vẽ các đoạn DL, DM, DL.
8. Vẽ đoạn FG, Vẽ tia DC, và điểm P là giao điểm cuat tia DC và đoạn FG, sau đó làm ẩn đi tia DC và hiện đoạn DP.
9. Tô màu khác nhau cho diện tích các tam giác DCF, DCG, và DBK.
Cách chứng minh này đưa ra mối liên quan giữa diện tích của các hình tam giác được tô màu với diện tích của các hình vuông trên các cạnh tam giác vuông.
Chọn menu Measure --> calculate để tính được tỉ lệ diện tích của các tam giác với các hình vuông tương ứng.
10. Đo diện tích các tam giác, và di chuyển điểm C quanh một nửa đường tròn trên đường kính AB.