K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

EF=căn 3^2+4^2=5cm

DM=5/2=2,5cm

14 tháng 5 2021

có ΔEDF cân ở D =>DE=DF; góc E =góc F

xét ΔDEM và ΔDFM có

DM là trung tuyến => EM=FM

góc E =góc F (cmt)

DE=DF (cmt)

=>ΔDEM = ΔDFM (cgc)

b)Có Δ DEF cân mà DM là trung tuyến 

=> DM là đường cao (tc Δ cân )

=> DM⊥EF

c) EM=FM=EF/2=5

xét ΔDEM có DM ⊥ EF => góc EMD =90o

=>EM2+DM2=ED2 (đl pitago)

=>52+DM2=132 => DM=12 

d) Ta có G là trọng tâm của ΔDEF 

=>DG=2/3DM=> DG=2/3*12=8

14 tháng 5 2021

giải giúp mình câu d 

 

23 tháng 10 2021

Vì DM là trung tuyến ứng với cạnh huyền EF nên \(DM=\dfrac{1}{2}EF=\dfrac{5}{2}=2,5\left(cm\right)\)

23 tháng 10 2021

mik cam on bn

11 tháng 12 2023

a: ΔDEF vuông tại D

=>\(DE^2+DF^2+EF^2\)

=>\(EF^2=9^2+12^2=225\)

=>\(EF=\sqrt{225}=15\left(cm\right)\)

Ta có; ΔDEF vuông tại D

mà DM là đường trung tuyến

nên \(DM=\dfrac{EF}{2}=7,5\left(cm\right)\)

b: Xét tứ giác DNMK có

\(\widehat{DNM}=\widehat{DKM}=\widehat{KDN}=90^0\)

=>DNMK là hình chữ nhật

c: Xét ΔDEF có MN//DF

nên \(\dfrac{MN}{DF}=\dfrac{EM}{EF}\)

=>\(\dfrac{MN}{DF}=\dfrac{1}{2}\)

mà \(MN=\dfrac{1}{2}MH\)

nên MH=DF

Ta có: MN//DF

N\(\in\)MH

Do đó: MH//DF

Xét tứ giác DHMF có

MH//DF

MH=DF

Do đó: DHMF là hình bình hành

=>DM cắt HF tại trung điểm của mỗi đường

mà O là trung điểm của DM

nên O là trung điểm của HF

=>H,O,F thẳng hàng

23 tháng 12 2021

a/ Xét tứ giác DPMQ có

EDF=MQD=ˆMPD=90oEDF^=MQD^=MPD^=90o

=> Tứ giác DPMQ là hcn

b/ Để hcn DPMQ là hình vuông thì DM là tia pg ^EDF

c/ Có I đx M qua DE

=> DE là đường t/trực của IM

=> DI = DM (1)

=> t/g DIM cân tại D có DE là đường trung trực

=> DE đồng thời là đường pg

=> ˆIDE=ˆEDMIDE^=EDM^ (2) 

CMTT : DM = DK (3) ; ˆKDF=ˆFDMKDF^=FDM^ (4)

Từ (2) ; (4)

=> ∠IDE+EDF+KDF=IDK=180oIDE^+EDF^+KDF^=IDK^=180o

=> I,D,K thẳng hàng 

Từ (1) ; (3)=> ID = DK

Do đó D là trđ IK

=> I đx K qua D

13 tháng 12 2017

I là trung điểm của EF nên IE = IF = EF/2 = 5cm.

Ta có : Giải bài 28 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7 ⇒ ΔDIE vuông tại I

Theo định lý Pitago trong tam giác vuông DIE ta có :

DE2 = DI2 + EI2 ⇒ DI2 = DE2 – EI2 = 132 – 52 = 144 ⇒ DI = 12 (cm).

14 tháng 11 2019

a) Ta có: \(DE^2+DF^2=3^2+4^2=25\left(cm\right)\)

và \(EF^2=5^2=25\left(cm\right)\)

\(\Rightarrow DE^2+DF^2=EF^2\)

\(\Delta DEF\)có ba cạnh thỏa mãn định lý Py - ta - go nên \(\Delta DEF\) vuông

b) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=\frac{1}{2}EF\)

\(\Rightarrow DI=\frac{1}{2}.5=2,5\left(cm\right)\)

c) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=FI=EI\)

Lại có IK vuông góc DF

\(\Rightarrow\)IK là đường trung trực của đoạn thẳng DF

\(\Rightarrow IK=\frac{1}{2}DF=\frac{1}{2}.4=2\left(cm\right)\)

31 tháng 10 2016

bài này tương tự bài 1

a) EF = 15

=> DM = EM = FM = 7,5

b) MND + D = 180

MND + 90 = 180 

=> MND = 90

D + MED = 180

90 + MED = 180

=> MED = 90

=> DNME là hình chữ nhật

c) y hệt như bài trước mik giải

a) \(EF=\sqrt{3^2+4^2}=5\)(cm)

\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{3\cdot4}{5}=\dfrac{12}{5}=2,4\left(cm\right)\)

b) \(EF=\sqrt{12^2+9^2}=15\left(cm\right)\)

\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cm\right)\)

c) \(EF=\sqrt{12^2+5^2}=13\left(cm\right)\)

\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{5\cdot12}{13}=\dfrac{60}{13}\left(cm\right)\)