Cho tam giác ABC,phân giác BD. Qua D kẻ De//BC(E € AB). Kẻ phân giác EF của góc AEC(F €AC)
a,chứng minh: EF//BD
b,vẽ EH là phân giác của góc BED(H€BD). Chứng minh EH vuông góc BD
Ai làm đc mình tích cho 5 cái
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔBAD và ΔBED có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔBAD=ΔBED(c-g-c)
a) Ta có: ΔBAD=ΔBED(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(gt)
nên \(\widehat{BED}=90^0\)
hay DE\(\perp\)BE(đpcm)
a) Xét \(\Delta ABD\)và \(\Delta EBD\)có :
BD ( cạnh chung )
\(\widehat{ABD}=\widehat{EBD}\)( gt )
Suy ra : \(\Delta ABD\)= \(\Delta EBD\)( cạnh huyền - góc nhọn )
\(\Rightarrow\)AB = BE
\(\Rightarrow\)\(\Delta ABE\)cân tại B mà \(\widehat{ABE}=60^o\)nên \(\Delta ABE\)đều
c) vì \(\widehat{ABC}+\widehat{ACB}=90^o\)\(\Rightarrow\widehat{ACB}=90^o-60^o=30^o\)
Mà \(\widehat{ABD}=\widehat{DBE}=30^o\)
\(\Rightarrow\)\(\Delta DBC\)cân tại D có DE là đường cao nên cũng là trung tuyến
\(\Rightarrow\)E là trung điểm của BC
d) \(\Delta ABE\)đều có AH là đường cao nên cũng là đường trung trực
\(\Rightarrow\)BF = EF
\(\Rightarrow\)\(\Delta BFE\)cân tại F
\(\Rightarrow\)\(\widehat{FBE}=\widehat{FEB}\)
Mà \(\widehat{FBE}=\widehat{ACB}\)
\(\Rightarrow\)\(\widehat{ACB}=\widehat{FEB}\)
Mà 2 góc này ở vị trị đồng vị nên EF // AC
Câu 1:
Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)
Suy ra: BA=BE(hai cạnh tương ứng)
Câu 2:
Xét ΔABH và ΔEBH có
BA=BE(cmt)
\(\widehat{ABH}=\widehat{EBH}\)(BH là tia phân giác của \(\widehat{ABE}\))
BH chung
Do đó: ΔABH=ΔEBH(c-g-c)
Suy ra: AH=EH(hai cạnh tương ứng)
mà A,H,E thẳng hàng
nên H là trung điểm của AE
a, Xét tam giác ABD và tam giác EBD có:
góc BAD=BED(tam giác abc vuông, DE vuông góc BC)
BD=BD(chung)
góc ABD=EBD (BD là phân giác)
=)tam giác ABD=tam giác EBD(cạnh huyền-góc nhọn)
vậy.....
b,gọi giao của AE và BD là O
ta có tam giác ABD=tam giác EBD
=)AB=BE ( 2 cạnh tưng ứng)
xét tam giác ABO và tam giác EBO có:
AB=BE (cmt)
góc ABO=EBO ( BD là phân giác)
BO=BO ( chung)
=)tam giác ABO=EBO (c-g-c)
=)AO=OE ( 2 cạnh tương ứng)(1)
AOB=EOB( 2 góc tương ứng)
mà AOB+EOB=180 độ ( 2 góc kề bù)
=)AOB=EOB=180:2=90độ
=)BO vuông góc AE (2)
từ(1) và (2)=)BO là trung trực AE
vậy....
c, Ta có tam giác DEC vuông tại E
=)DC>DE ( trong tam giác vuông cạnh huyền là cạnh lớn nhất)
mà DE=DA ( tam giác ABD= tam giác EBD)
=)DC>DA
hay DA<DC
vậy....
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: Ta có: ΔBAD=ΔBED
nên BA=BE và DA=DE
Ta có: BA=BE
nên B nằm trên đường trung trực của AE\(\left(1\right)\)
Ta có: DA=DE
nên D nằm trên đường trung trực của AE\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AE
XÉT TAM GIÁC AHB VÀ TAM GIÁC AHC CÓ
AB=AC(GT)
AH CHUNG
GÓC AHB = GÓC AHC
=>TAM GIÁC AHB=TAM GIÁC AHC (CGC)
C,XÉT TAM GIÁC AHE VÀ TAM GIÁC AFH CÓ
AH CHUNG
GÓC AEH=GÓC AFH =90*
A1=A2
=>TAM GIÁC AHE=TAM GIÁC AFH (GCG)
=>HE=HF (CẠNH TƯƠNG ỨNG)