Chứng minh rằng 4n + 6 chia het cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 74n = (72)2n = 492n = (....1)
=> 74n - 1 có tận cùng là 0 nên chia hết cho 5
b) 34n+1 = (32)2n .3 = 92n.3 = (....1).3 = (....3)
=> 34n+1 + 2 có tận cùng là 5 => chia hết cho 5
c) 92n+1 = (92n). 9 (...1).9 = (....9)
=> 92n+1 +1 có tận cùng la 0 => chia hết cho 5
1,
A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)
a) \(7^{4n-1}=2401^n-1\)
Vì chữ số cuối cùng của \(2401\) là 1 nên chữ số cuối cùng của \(2401^n-1\) là 1 với mọi n nguyên dương
\(\Rightarrow\)Chữ số cuối cùng của \(2401^n-1\)là 0\(\Rightarrow\)\(\left(7^{4n-1}\right)\)chia hết cho 5 với mọi n nguyên dương
Gọi 2 ps đó là a/b và c/d (ƯCLN (a,b) = 1; ƯCLN (c;d) = 1)
Ta có;
\(\frac{a}{b}+\frac{c}{d}=m\) (m thuộc Z)
=> \(\frac{ad+bc}{bd}=m\)
=> ad + bc = mbd (10
Từ (1) => ad + bc chia hết cho b
Mà bc chia hết cho b
=> ad chia hết cho b
Mà (a,b) = 1
=> d chia hết cho b (2)
Từ (1) => ad + bc chia hết cho d
Mà ad chia hết cho d
=> bc chia hết cho d
Mà (c,d) = 1
=> b chia hết cho d (3)
Từ (2) và (3) =>bh = d hoặc b = -d (đpcm)
0 2 4 6 8
6 là một số chia hết cho 2
Vì mọi số nhân 2 đều có kết quả và số chẵn, mà 4 = 2 x 2 nên 4n + 6 chia hết cho 2