X/yz÷y/Zn biết 3x=2y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(3x=2y=>y=\frac{3}{2}x\)
Ta có
\(\frac{x}{yz}:\frac{y}{zx}=\frac{x}{yz}.\frac{zx}{y}=\frac{x^2}{y^2}=\frac{x^2}{\left(\frac{3}{2}x\right)^2}=\frac{x^2}{\frac{9}{4}x^2}=\frac{4}{9}\)
tick nha
Hên xui thôi ( cái này không có chắc lắm )
\(\frac{x^3-xy^3+y^3z-yz^3+z^3x-x^3z}{x^2y-xy^2+y^2z-yz^2+z^2x-zx^2}\)
\(=xy-xy+xy-yz+zx-x^3\)\(z\)\(-\)\(zx^2\)
\(=xy-yz-zx-x^3\)\(z\)
phần trên sai rồi cho xin lỗi ( trình bày lại )
bạn ghi lại đề nha
= xy - xy + yz - yz + zx - x^3z - zx^2
= -zx - x^3z
a) Ta có: \(x^2-y^2-2x+2y\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
b) Ta có: \(2x+2y-x^2-xy\)
\(=2\left(x+y\right)-x\left(x+y\right)\)
\(=\left(x+y\right)\left(2-x\right)\)
c) Ta có: \(x^2-25+y^2+2xy\)
\(=\left(x+y\right)^2-25\)
\(=\left(x+y-5\right)\left(x+y+5\right)\)
d) Ta có: \(3x^2-6xy+3y^2-12z^2\)
\(=3\left(x^2-2xy+y^2-4z^2\right)\)
\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)
e) Ta có: \(x^2+2xy+y^2-xz-yz\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
f) Ta có: \(x^2-2x-4y^2-4y\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
Từ đẳng thức : \(\frac{3x-2y}{5}=\frac{2z-5x}{3}=\frac{5y-3z}{2}\)
=> \(\frac{15x-10y}{5^2}=\frac{6z-15x}{3^2}=\frac{10y-6z}{2^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{15x-10y}{5^2}=\frac{6z-15x}{3^2}=\frac{10y-6z}{2^2}=\frac{15x-10y+6z-15x+10y-6z}{5^2+3^2+2^2}=0\)
=> \(\hept{\begin{cases}15x=10y\\6z=15x\\10y=6z\end{cases}\Rightarrow\hept{\begin{cases}3x=2y\\2z=5x\\5y=3z\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{z}{5}=\frac{x}{2}\\\frac{y}{3}=\frac{z}{5}\end{cases}\Rightarrow}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Khi đó : x2 + 176 = yz
<=> (2k)2 - 15k2 = -176
=> k2(4 - 15) = -176
=> k2 = 16
=> k2 = 42
=> k = \(\pm\)4
Nếu k = 4
=> \(\hept{\begin{cases}x=8\\y=12\\z=20\end{cases}}\)
Nếu k = - 4
=> \(\hept{\begin{cases}x=-8\\y=-12\\z=-20\end{cases}}\)