K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

\(A=2^{100}+2^{101}+2^{102}+2^{103}+2^{104}+2^{105}\)

   \(=2^{100}.\left(1+2+2^2+2^3+2^4+2^5\right)=2^{100}.63\)

    \(=2^{100}.9.7⋮7\)

Vậy \(A=2^{100}+2^{101}+2^{102}+2^{103}+2^{104}+2^{105}⋮7\)

26 tháng 12 2024

A = 1 + 21 + 22 + 23 + ...+ 2100 + 2101

A = 20 + 21 + 22 + 23 + ...+ 2100 + 2101

Xét dãy số:0; 1; 2; 3;...; 100; 101

Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1

Số số hạng của dãy số trên là: (101 - 0) : 1 + 1  = 102 (số) 

Vì 102 : 3 = 34 

Vậy nhóm ba số hạng liên tiếp của A vào nhau ta được 

A = (1 + 21 + 22) + (23 + 24 + 25) + ...+ (299 + 2100 + 2101)

A = (1 + 21 + 22) + 23.(1 + 21 + 22) + ...+ 299.(1 + 21 + 22)

A = (1 + 21 + 22).(1 + 23 + ...+ 299)

A = 7.(1 + 23 + ...+ 299) ⋮ 7 (đpcm)

 

 

 

14 tháng 10 2023

a) Tổng A có số số hạng là:

`(101-1):1+1=101`(số hạng)

b) `A=2+2^3 +2^5 +...+2^101`

`2^2 A=2^3 +2^5 +2^7 +...+2^103`

`4A-A=2^3 +2^5 +2^7 +...+2^103 -2-2^3 -2^5 -...-2^101`

`3A=2^103 -2`

`=>3A+2=2^103 -2+2=2^103`

c) `A=2+2^3 +2^5 +...+2^101`

`A=2(1+2^2 +2^4 +...+2^100)⋮2`

`A=2+2^3 +2^5 +...+2^101`

`A=2(1+2^2 +2^4)+...+2^97 .(1+2^2 +2^4)`

`A=2.21+...+2^97 .21`

`A=21(2+...+2^97)⋮21`

14 tháng 10 2023

loading...  loading...  

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

25 tháng 6 2015

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12

5 tháng 11 2017
 

Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N ) 
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1 
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3 
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3 
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3 .

 
 
5 tháng 11 2017
 

Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N ) 
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1 
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3 
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3 
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3 .

 
21 tháng 12 2021

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\\ A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\\ A=\left(2+2^2\right)\left(1+2^2+...+2^{98}\right)\\ A=6\left(1+2^2+...+2^{98}\right)⋮6\)

18 tháng 10 2021

\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(=6+2^2.6+...+2^{98}.6\)

\(=6\left(1+2^2+...+2^{98}\right)⋮6\)

18 tháng 10 2021

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(=\left(2+2^2\right)+2^2\left(2+2\right)+...+2^{98}\left(2+2^2\right)\)

\(=\left(2+2^2\right)\left(1+2^2+...+2^{98}\right)\)

\(=6\left(1+2^2+...+2^{98}\right)\)⋮6

⇒ A⋮6

2 tháng 12 2023

Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2

TH1: Nếu a chia hết cho 3 => Đề bài đúng

TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)

=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng

TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)

=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng

TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)

2 tháng 12 2023

Bài 5:

Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3

Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2

Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4

Nhưng: 2 không chia hết cho 4

Nên: 4(b+1)+2 không chia hết cho 4

Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4 

Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)

9 tháng 11 2021

\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(=6+2^2.6+...+2^{98}.6=6\left(1+2^2+...+2^{98}\right)⋮6\)

16 tháng 10 2021

\(A=2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(=6+6.2^2+...+6.2^{98}\)

\(=6\left(1+2^2+...+2^{98}\right)⋮6\)