Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chứng tỏ rằng ps sau tối giản với mọi số tự nhiên n : \(\frac{n+1}{2n+3}\)
Gọi d là ƯCLN của n+1 và 2n+1
Ta có: n+1 chia hết cho d
2n+1 chia hết cho d
=> 2(n+1) chi hết cho d => 2n+2 chia hết cho d
Vì 2n+2 - (2n+1) chia hết cho d
Nên 1 chia hết cho d với mọi số tự nhiên n
=> d =1
Vậy phân số \(\frac{n+1}{2n+1}\)là phân số tối giản với mọi số tự nhiên n
Cho ước chung lớn nhất của n+1 và 2n+3 là d
Ta có : n+1 chia hết cho d -> 2(n+1) cũng chia hết cho d
-> 2n+3 - 2(n+1) chia hết cho d (nếu 2 số cùng chia hết cho 1 số a thì tổng hoặc hiệu của 2 số đó cũng chia hết cho a)
-> 2n+3 - (2n+2) chia hết cho d
-> 1 chia hết cho d
-> n+1 và 2n +3 là 2 số nguyên tố cùng nhau
\(\frac{n+1}{2n+3}\) đã tối giản với mọi số tự nhiên n
Gọi d là ƯCLN của n+1 và 2n+1
Ta có: n+1 chia hết cho d
2n+1 chia hết cho d
=> 2(n+1) chi hết cho d => 2n+2 chia hết cho d
2n+1 chia hết cho d
Vì 2n+2 - (2n+1) chia hết cho d
Nên 1 chia hết cho d với mọi số tự nhiên n
=> d =1
Vậy phân số \(\frac{n+1}{2n+1}\)là phân số tối giản với mọi số tự nhiên n
Cho ước chung lớn nhất của n+1 và 2n+3 là d
Ta có : n+1 chia hết cho d -> 2(n+1) cũng chia hết cho d
-> 2n+3 - 2(n+1) chia hết cho d (nếu 2 số cùng chia hết cho 1 số a thì tổng hoặc hiệu của 2 số đó cũng chia hết cho a)
-> 2n+3 - (2n+2) chia hết cho d
-> 1 chia hết cho d
-> n+1 và 2n +3 là 2 số nguyên tố cùng nhau
\(\frac{n+1}{2n+3}\) đã tối giản với mọi số tự nhiên n