K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2015

Gọi d là ƯCLN của n+1 và 2n+1

Ta có: n+1 chia hết cho d

2n+1 chia hết cho d

=> 2(n+1) chi hết cho d => 2n+2 chia hết cho d

2n+1 chia hết cho d

Vì 2n+2 - (2n+1) chia hết cho d 

Nên 1 chia hết cho d  với mọi số tự nhiên n

=> d =1 

Vậy phân số \(\frac{n+1}{2n+1}\)là phân số tối giản với mọi số tự nhiên n

17 tháng 5 2015

Cho ước chung lớn nhất của n+1 và 2n+3 là d

  Ta có : n+1 chia hết cho d -> 2(n+1) cũng chia hết cho d

-> 2n+3 - 2(n+1) chia hết cho d (nếu 2 số cùng chia hết cho 1 số a thì tổng hoặc hiệu của 2 số đó cũng chia hết cho a)

 -> 2n+3 - (2n+2) chia hết cho d

 -> 1 chia hết cho d

-> n+1 và 2n +3 là 2 số nguyên tố cùng nhau

\(\frac{n+1}{2n+3}\) đã tối giản với mọi số tự nhiên n

6 tháng 4 2017

Gọi d là WCLN (n + 1; 2n + 3) nên ta có :

\(n+1⋮d\) và \(2n+3⋮d\)

\(\Rightarrow2\left(n+1\right)⋮d\) và \(2n+3⋮d\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Do đó : \(A=\frac{n+1}{2n+3}\) tối giản (ĐPCM)

6 tháng 4 2017

Gọi d= ƯCLN(n+1;2n+3)

=> n+1 :d

    2n+3 : d  ( mình viết dấu : thay cho dấu chia hết nhé)

=>2.(n+1) :d

    2n+3 :d

=>2n+2:d

  2n+3:d

=>(2n+3)-(2n+2):d

=>1:d

=>d=1

Vậy ƯCLN(n+1;2n+3)=1

Vì ƯCLN(n+1;2n+3)=1 nên A tối giản với n là số tự nhiên

23 tháng 7 2016

a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)

=> n + 1 chia hết cho d; 2n + 3 chia hết cho d

=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d

=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(n+1; 2n+3) = 1

=> n + 1 và 2n + 3 là 2 số nguyên tố cùng nhau

Câu b lm tương tự

14 tháng 7 2015

Gọi ƯCLN(n+1; 2n+3) là d. Ta có:

n+1 chia hết cho d => 2n+2 chia hết cho d

2n+3 chia hết cho d

=> 2n+3-(2n+2) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> \(\frac{n+1}{2n+3}\)là phân số tối giản (Đpcm)

26 tháng 6 2018

gọi d là ƯCLN của \(\frac{n+1}{2n+3}\)ta có:

\(\text{(2n+3)-(n-1) ⋮d}\)

\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)

\(\Rightarrow2n+3-2n-2⋮d\)

\(\Rightarrow2n-2n+3-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

vậy \(\frac{n+1}{2n+3}\)là p/s tối giản với mọt số tự nhiên n

16 tháng 8 2018

Giả sử phân số sau chưa tối giản

\(\Rightarrow2n+3⋮d;4n+8⋮d\left(d\in N;d>1\right)\)

\(2n+3⋮d\Rightarrow4n+6⋮d\)

\(\Rightarrow4n+8-4n-6⋮d\)

\(\Rightarrow2⋮d\)

Vậy d có thể = 2 

Vậy p/s sau vẫn có thể tối giản đc

16 tháng 8 2018

Giả sử ƯCLN  (2n+3;4n+8)=d

\(\Rightarrow4n+8⋮d\)\(4n+8=2\left(2n+4\right)\)\(\Rightarrow2n+4⋮d\)

\(\Rightarrow d=2n+4-\left(2n+3\right)\)\(=2n+4-2n-3\)\(=1\)

Do d=1 thì \(\frac{2n+3}{4n+8}\)là số tối giản với bất kì  số tư nhiên n

Chú bạn hok tốt

21 tháng 4 2023

Gọi ƯCLN (n+1,2n+3) = d (d∈N*)
=> n+1 ⋮ d => 2(n+1) ⋮ d => 2n+2 ⋮ d

2n+3 ⋮ d

=>(2n+3)-(2n+2)⋮d => d=1

=> ƯCLN(n+1,2n+3) = 1

=> Phân số n+1/2n+3 tối giản (đpcm)

7 tháng 6 2016

a) Đặt ƯCLN(n+1; 2n+3) = d

=> (2n + 3) - (n + 1) chia hết cho d

=> (2n + 3) - [2.(n + 1)] chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 1 chia hết cho d => d = 1

Do ƯCLN(n+1; 2n+3) = 1 nên \(\frac{n+1}{2n+3}\) tối giản

b) Đặt ƯCLN(2n+3; 4n+8) = d

=> (4n + 8) - (2n + 3) chia hết cho d

=> (4n + 8) - [2.(2n + 3)] chia hết cho d

=> (4n + 8) - (4n + 6) chia hết cho d

=> 2 chia hết cho d => d \(\in\) {1; 2}

Nhưng d khác 2 vì d là ước chung của 2 số lẻ nên d = 1

Do ƯCLN(2n+3; 4n+8) = 1 nên \(\frac{2n+3}{4n+8}\) tối giản 

7 tháng 6 2016

a) \(\frac{n+1}{2n+3}\)

Đặt ƯCLN(n+1; 2n+3) = d

=> n + 1 \(⋮d\) và 2n + 3 \(⋮d\)

=> (2n + 3) - (n + 1) \(⋮d\)

=> (2n + 3) - [2.(n + 1)] \(⋮d\)

=> (2n + 3) - (2n + 2) \(⋮d\)

=> 1 \(⋮d\)

=> d = 1

Do ƯCLN(n+1; 2n+3) = 1 nên phân số \(\frac{n+1}{2n+3}\) tối giản

b) \(\frac{2n+3}{4n+8}\)

Đặt ƯCLN(2n+3;4n+8) = d

=> 2n+3 \(⋮d\) và 4n+8\(⋮d\)

=> (4n + 8) - (2n + 3) \(⋮d\)

=> (4n + 8) - [2.(2n + 3)] \(⋮d\)

=> (4n + 8) - (4n + 6) \(⋮d\)

=> 2 chia hết cho d

=> d {1; 2}

Vì 2n + 3 là số lẻ, 4n + 8 là số chẵn nên ƯC(2n+3;4n+8) là 1 số lẻ

=> \(d\ne2\Rightarrow d=1\)

Do ƯCLN(2n+3; 4n+8) = 1 nên phân số \(\frac{2n+3}{4n+8}\) tối giản 

2 tháng 6 2018

Gợi Ư CLN\(\left(2n+3;4n+8\right)=d\)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\Rightarrow2.\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\Rightarrow d=1;2\)

\(+d=2\Rightarrow2n+3⋮2\)

Mak 2n+3 ko chia hết cho 2

\(\Rightarrow d\ne2\)

\(\Rightarrow d=1\)

\(\Rightarrowđpcm\)

25 tháng 2 2018

Gọi d là ƯC(n+1; 2n+3)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

\(\Rightarrow\left(2n+2\right)-\left(2n+3\right)⋮d\)

\(\Rightarrow2n+2-2n-3⋮d\)

\(\Rightarrow\left(2n-2n\right)-\left(3-2\right)⋮d\)

\(\Rightarrow0-1⋮d\)

\(\Rightarrow-1⋮d\)

\(\Rightarrow d\inƯ\left(-1\right)=\left\{-1;1\right\}\)

\(\Rightarrow\frac{n+1}{2n+3}\) là phân số tối giản với mọi n thuộc N

25 tháng 2 2018

n+1 phần 2n+3 nha mấy bạn

11 tháng 6 2015

a)Gọi d là ƯCLN(n+1;2n+3)

=>2n+3 chia hết cho d

n+1 chia hết cho d

=>(2n+3)-(n+1)=n+2 chia hết cho d

Do n+1 và n+2 là 2 số nguyên liên tiếp mà d là ước chung của 2 số đó => d=1

=>2n+3 và n+1 là 2 số nguyên tố cùng nhau => phân số \(\frac{n+1}{2n+3}\) tối giản

b) làm tương tự cũng xét hiệu như thế nha!

26 tháng 6 2018

a,

gọi d là ƯCLN của \(\frac{n+1}{2n+3}\)ta có:

\(\text{(2n+3)-(n-1) ⋮d}\)

\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)

\(\Rightarrow2n+3-2n-2⋮d\)

\(\Rightarrow2n-2n+3-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

vậy \(\frac{n+1}{2n+3}\)là p/s tối giản với mọt số tự nhiên n