Tìm nghiệm của đa thức H(x) = 5x + 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đa thức có nghiệm là `1 =>x=1` thỏa mãn: `a.1^2+5.1-4=0`
`<=>a+1=0`
`<=>a=-1`
Đặt `5x-15=0`
`-> 5x=0+15`
`-> 5x=15`
`-> x=15 \div 5`
`-> x=3`
Vậy, nghiệm của đa thức là `x=3.`
a) A(x) = 5x4 - 5 + 6x3 + x4 - 5x - 12
= (5x4 + x4) + (- 5 - 12) + 6x3 - 5x
= 6x4 - 17 + 6x3 - 5x
= 6x4 + 6x3 - 5x - 17
B(x) = 8x4 + 2x3 - 2x4 + 4x3 - 5x - 15 - 2x2
= (8x4 - 2x4) + (2x3 + 4x3) - 5x - 15 - 2x2
= 4x4 + 6x3 - 5x - 15 - 2x2
= 4x4 + 6x3 - 2x2 - 5x - 15
b) C(x) = A(x) - B(x)
= 6x4 + 6x3 - 5x - 17 - (4x4 + 6x3 - 2x2 - 5x - 15)
= 6x4 + 6x3 - 5x - 17 - 4x4 - 6x3 + 2x2 + 5x + 15
= ( 6x4 - 4x4) + ( 6x3 - 6x3) + (- 5x + 5x) + (-17 + 15) + 2x2
= 2x4 - 2 + 2x2
= 2x4 + 2x2 - 2
3x3 - 4x + 5x2 - 2x3 + 8 - 5x2 - x3
= 3x3 - 2x3 - x3 + 5x2 - 5x2 - 4x + 8
= -4x + 8
ta có: -4x + 8 = 0
vì \(-4x\le0\) với mọi x
=> \(-4x+8\le-8< 0\)
=> đa thức trên ko có nghiệm
t i c k nhé
h(x) = -5x +30 =0
=> -5x = -30
<=> x =6
vậy x =6 là nghiệm của h(x)
\(h\left(x\right)=-5x+30\)
Ta có : \(-5x+30=0\)
\(-5x=-30\)
\(x=6\)
Vậy nghiệm của phương trình là \(x=6\)
Phân tích đa thức thành nhân tử thôi bạn :
Ta có :
\(h\left(x\right)=x^2+5x+6\)
\(h\left(x\right)=x\left(x+2\right)+3\left(x+2\right)\)
\(h\left(x\right)=\left(x+2\right)\left(x+3\right)\)
\(\Rightarrow N_oh\left(x\right)=-2;-3\)
\(g\left(x\right)=2x^2+7x-9\)
\(g\left(x\right)=2x^2+9x-2x-9\)
\(g\left(x\right)=2x\left(x-1\right)+9\left(x-1\right)\)
\(g\left(x\right)=\left(x-1\right)\left(2x+9\right)\)
\(\Rightarrow N_og\left(x\right)=1;-4,5\)
x2+5x-6=0
x2-x+6x-6=0
x(x-1)+6(x-1)=0
(x-1)(x+6)=0
=>x-1=0 hoặc x+6=0
=>x=1 hoặc x=-6
vậy nghiệm của đa thức là 1;-6
x2+5x+6=0
x2+2x+3x+6=0
x(x+2)+3(x+2)=0
(x+2)(x+3)=0
=>x+2=0 hoặc x+3=0
=>x=-2 hoặc x=-3
vậy nghiệm của đa thức là -2;-3
x2-8x+15=0
x2-3x-5x+15=0
x(x-3)-5(x-3)=0
(x-3)(x-5)=0
=>x-3=0 hoặc x-5=0
=>x=3 hoặc x=5
vậy nghiệm của đa thức là 3;5
Để cho H(x) có nghiệm thì \(-\dfrac{1}{5}x-1=0\)
\(\Leftrightarrow-x-5=0\)
\(\Leftrightarrow-x=5\)
\(\Leftrightarrow x=-5\)
Để cho M(x) có nghiệm thì \(2x^2+4x=0\)
\(\Leftrightarrow2x\left(x+2\right)=0\)
\(\Leftrightarrow x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Cho `H(x) = 0`
`=> 5x + 15 = 0`
`=> 5x = -15`
`=> x = -15 : 5`
`=> x = -3`
Vậy nghiệm của đa thức `H(x)` là `-3`
cho H(x) = 0
\(=>5x+15=0=>5x=-15=>x=-3\)