Các số sau có phải số chính phương không?Vì sao
a) A=10100+1050+1
b) B=1010+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- A không phải là số chí phương. Vì từ đề ta có:
abc+bca+cab=(a.100+b.10+c)+(b.100+c.10+a)+(c.100+a.10+b)= a.111+b.111+c.111=111.(a+b+c)
->A không phải là số chính phương vì 111 nhân với số trừ 111 thì không có số chính phương.
A)Vì tích của các bình phương luôn luôn có chữ số tận cùng là 0;1;;4;5;6;9 nên số chính phương có chữ số tận cùng là 0;1;4;5;6;9.
B)Cả 2 Tổng hiệu trên không phải là số chính phương.
a) Vì các tích của các bình phương luôn luôn có chữ số tận cùng là 0;1;4;5;6;9 nên số chính phương có tận cùng là các chữ số 0;1;4;5;6;9
b) Cả hai tổng hiệu trên ko phải là số chính phương
Bài 1:
13 + 23 = 1 + 8 = 9 = 32 (là một số chính phương)
13 + 23 + 33 = 1 + 8 + 27 = 36 = 62 (là một số chính phương)
13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102 (là số cp)
13 + 23 + 33 + 43 + 53 = 1 + 8 + 27 + 64 + 125 = 225 = (15)2 là số cp
Bài 2:
1262 + 1 = \(\overline{..6}\) + 1 = \(\overline{...7}\) (không phải số chính phương)
100! + 8 = \(\overline{...0}\) + 8 = \(\overline{...8}\) (không phải là số chính phương)
1012 - 3 \(\overline{..01}\) - 3 = \(\overline{...8}\) (không phải là số chính phương)
107 + 7 = \(\overline{..0}\) + 7 = \(\overline{..7}\) (không phải là số chính phương)
11 + 112 + 113 = \(\overline{..1}\)+ \(\overline{..1}\)+ \(\overline{..1}\) = \(\overline{...3}\) (không phải số chính phương)
a. Ta có: A = 5 + 52 + 53 +....+ 5100
\(\Rightarrow A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(\Rightarrow A=5\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)
\(\Rightarrow A=5.6+5^3.6+...+5^{99}.6\)
\(A=6.\left(5+5^3+...+5^{99}\right)\) chia hết cho 6.
Vì A chia hết cho 6 nên A là hợp số.