K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2016

Đây là bất đẳng thức Trê-bư-sep nhé :)

Ta có : \(\left(a+b+c\right)\left(x+y+z\right)\ge3\left(ax+by+cz\right)\)

\(\Leftrightarrow a\left(x+y+z\right)-3ax+b\left(x+y+z\right)-3by+c\left(x+y+z\right)-3cz\ge0\)

\(\Leftrightarrow a\left(y+z-2x\right)+b\left(x+z-2y\right)+c\left(x+y-2z\right)\ge0\)

\(\Leftrightarrow a\left(y-x\right)+a\left(z-x\right)+b\left(x-y\right)+b\left(z-y\right)+c\left(x-z\right)+c\left(y-z\right)\ge0\)

\(\Leftrightarrow\left(y-x\right)\left(a-b\right)+\left(z-x\right)\left(a-c\right)+\left(z-y\right)\left(b-c\right)\ge0\)

Bất đẳng thức cuối luôn đúng vì \(\hept{\begin{cases}a\ge b\ge c\\x\le y\le z\end{cases}}\)

Vậy bđt ban đầu dc chứng minh

29 tháng 10 2016

Xét hiệu:

(a + b + c)(x + y + z) - 3(ax + by + cz)

= a(x + y + z) - 3ax + b(x + y + z) - 3by + c(x + y + z) - 3cz

= a(x + y + z - 3x) + b(x + y + z - 3y) + c(x + y + z - 3z)

= a(y + z - 2x) + b(x + z - 2y) + c(x + y - 2z)

= a[(y - x) - (x - z)] + b[(z - y) - (y - x)] + c[(x - z) - (z - y)]

= (y - x)(a - b) + (x - z)(c - a) + (z - y)(b - c) \(\ge0\)

do \(a\ge b\ge c\)\(x\le y\le z\)

\(\Rightarrow\left(a+b+c\right)\left(x+y+z\right)\ge3\left(ax+by+cz\right)\left(đpcm\right)\)

29 tháng 10 2016

thêm một chút nhé

Dấu bằng xảy ra khi và chỉ khi

a=b=c và x=y=z

22 tháng 2 2020

\(LHS\ge\left(\sqrt{ax}.\sqrt{\frac{a}{x}}+\sqrt{bx}.\sqrt{\frac{b}{x}}+\sqrt{cx}.\sqrt{\frac{c}{x}}\right)^2=\left(a+b+c\right)^2\)

31 tháng 3 2018

Nó là bđt bunyakovsky luôn rồi mà bạn,lên google sẽ có cách chứng minh

31 tháng 3 2018

Mk lên tra được câu a thôi

Bn giúp mk câu b đi

11 tháng 1 2015

Bai 1: Ap dung BDT Bunhiacopxki ta co:

         \(ax+by+cz+2\sqrt {(ab+ac+bc)(xy+yz+xz)} \)

         \(≤ \sqrt {(a^2+b^2+c^2)(x^2+y^2+z^2)} + \sqrt {(ab+ac+bc)(xy+yz+zx)}+\sqrt {(ab+ac+bc)(xy+yz+zx)}\)

         \(≤ \sqrt {(a^2+b^2+c^2+2ab+2ac+2bc)(x^2+y^2+z^2+2xy+2yz+2zx)}\)

         \(= (a+b+c)(x+y+z)\) 

   =>  \(Q.E.D\)

11 tháng 1 2015

Tiep bai 4:Ta co:

               BDT <=>  \((2+y^2z)(2+z^2x)(2+x^2y)≥(2+x)(2+y)(2+z)\)

    Sau khi khai trien con:   \(2(z^2x+y^2z+x^2y)+x^2z+z^2y+y^2x≥xy+yz+zx+2x+2y+2z \)

               Ap dung BDT Cosi ta co:

                                       \(z^2x+x ≥ 2zx \) <=> \(z^2x≥2zx-x\)

              Lam tuong tu ta co:  \(2(z^2x+y^2z+x^2y)≥4xy+4yz+4zx-2x-2y-2z \)(1)

                                        \(x^2z+{1\over z}≥2x \) <=> \(x^2z≥2x-xy \) (do xyz=1)

              Lam tuong tu ta co:  \(x^2z+z^2y+y^2x≥ 2y+2z+2x-xy-yz-zx\)(2)

Cong (1) voi (2) ta co:      VT\(≥ 3(xy+yz+zx)\)(*)

               Voi cach lam tuong tu ta cung duoc:  VT\(≥ 3(x+y+z) \)(**)

Tu (*) va (**) suy ra :   \(3 \)VT \(≥ 6(x+y+z)+3(xy+yz+zx) \)

                           <=>   VT \(≥ 2(x+y+z)+xy+yz+zx\)

                            =>   \(Q.E.D\)