CM: Hàm số y= f(x) = x3 luôn luôn đồng biến.
Giúp Mk nhanh vs nhé. Mk cảm ơn trước!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo mình ( nhưng ko pik có đúng ko )
998 - 100 :2 + 1 = 447 ( số )
Nếu ai thấy đúng thì đúng hộ mk
Đáp án B
Từ bảng xét dấu f'(x) ta thấy trên khoảng ( - ∞ ; - 1 ) thì f'(x)<0 nên hàm số y=f(x) nghịch biến trên khoảng ( - ∞ ; - 1 )
\(y'=x^2-2x+1=\left(x-1\right)^2\ge0\) ;\(\forall x\in R\)
\(\Rightarrow\) Hàm đồng biến trên R
Xét \(\frac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}=\frac{x_2^3-x_1^3}{x_2-x_1}=\frac{\left(x_2-x_1\right)\left(x_2^2+x_1x_2+x_1^2\right)}{x_2-x_1}=x_1^2+x_1x_2+x_2^2=\left(x_1^2+x_1x_2+\frac{x_2^2}{4}\right)+\frac{3x_2^2}{4}\)
\(=\left(x_1+\frac{x_2}{2}\right)^2+\frac{3x_2^2}{4}>0\)
Do vậy hàm số luôn đồng biến.
Với x1 > x2 thì f(x1) - f(x2)
= x13 - x23 = (x1 - x2)(x12 + x1 x2 + x22) = (x1 - x2)[(x12 + x1 x2 + x22/4) + 3x22 ) = (x1 - x2)[x1 + x2/2)2 + 3x22/4) > 0
Vậy hàm số đồng biến