Tìm x thoả mãn: |x2 + x + 1| = x2 - x + 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ptr có `2` nghiệm `<=>\Delta' >= 0`
`<=>[-(m-1)]^2-(m+1) >= 0`
`<=>m^2-2m+1-m-1 >= 0`
`<=>m(m-3) >= 0<=>[(m <= 0),(m >= 3):}`
`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2m-2),(x_1.x_2=c/a=m+1):}`
Ta có: `[x_1]/[x_2]+[x_2]/[x_1]=4`
`<=>[x_1 ^2+x_2 ^2]/[x_1.x_2]=4`
`<=>[(x_1+x_2)^2-2x_1.x_2]/[x_1.x_2]=4`
`<=>[(2m-2)^2-2(m+1)]/[m+1]=4` `(m ne -1)`
`=>4m^2-8m+4-2m-2=4m-4`
`<=>4m^2-14m+8=0`
`<=>m=[7+-\sqrt{17}]/4` (ko t/m)
`=>` Ko có giá trị `m` t/m
Lời giải:
$\Delta'=4+m^2+1=5+m^2>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-4\\ x_1x_2=-(m^2+1)\end{matrix}\right.\)
Khi đó:
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=-\frac{5}{2}\)
\(\Leftrightarrow \frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=\frac{-5}{2}\Leftrightarrow \frac{(x_1+x_2)^2}{x_1x_2}=-\frac{1}{2}\)
\(\Leftrightarrow \frac{16}{-(m^2+1)}=\frac{-1}{2}\Leftrightarrow m^2+1=32\)
\(\Rightarrow m=\pm \sqrt{31}\)
Cho pt x²+(a-1)x-6=0 a) Giải pt với a =6 b) Tìm a để pt có 2 nghiệm x1,x2 thoả mãn x1²+x2²-3x1.x2=34
a: \(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)
=>x=-6 hoặc x=1
a/ Thay m = 1 vào pt ta được: x2 + 2 = 0 => x2 = -2 => pt vô nghiệm
b/ Theo Vi-ét ta được: \(\begin{cases}x_1+x_2=2m-2\\x_1.x_2=m+1\end{cases}\)
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\) \(\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=4\) \(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=4\) \(\Leftrightarrow\frac{\left(2m-2\right)^2-2\left(m+1\right)}{m+1}=4\) \(\Leftrightarrow\frac{4m^2-8m+4-2m-2}{m+1}=4\) \(\Leftrightarrow4m^2-10m+2=4m+4\) \(\Leftrightarrow4m^2-14m-2=0\)
Giải denta ra ta được 2 nghiệm: \(\begin{cases}x_1=\frac{7+\sqrt{57}}{4}\\x_2=\frac{7-\sqrt{57}}{4}\end{cases}\)
Khi m=1 ta có : \(x^2-2=0\Leftrightarrow x=\pm\sqrt{2}\)
Pt 2 nghiệm x1 ; x2 thỏa mãn : \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\) \(\Leftrightarrow\frac{x_1^2+x_2^2}{x_1+x_2}=4\Leftrightarrow\frac{x_1^2+x_2^2-2x_1x_2+2x_1x_2}{x_1+x_2}=4\) \(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1+x_2}=4\) (1)
Theo viet ta có: \(x_1x_2=\frac{c}{a}=\left(m+1\right)\); \(x_1+x_2=\frac{-b}{a}=2\left(m+1\right)\)
Thay vài (1) ta có: \(\frac{\left[2\left(m+1\right)\right]^2-2\left(m-1\right)}{2\left(m+1\right)}=4\) \(\Leftrightarrow4\left(m^2+2m+1\right)-2m+1=8\left(m+1\right)\Leftrightarrow4m^2+6m+5-8m-8=0\) \(\Leftrightarrow4m^2-2m-3=0\Leftrightarrow\left[\begin{array}{nghiempt}m=\frac{1+\sqrt{13}}{4}\\m=\frac{1-\sqrt{13}}{4}\end{array}\right.\)
Δ=(4m+2)^2-4(3m^2+6m)
=16m^2+16m+4-12m^2-24m=4m^2-8m+4=(2m-2)^2
=>Phương trình luôn có 2 nghiệm
x1+2x2=16 và x1+x2=4m+2
=>x2=16-4m-2 và x1+2x2=16
=>x2=-4m+14 và x1=16+8m-28=8m-12
x1x2=3m^2+6m
=>-32m^2+48m+112m-168=3m^2+6m
=>m=12/5 hoặc m=2
CHÀO BẠN
Áp dụng Viét
- x1*x2=4m (1)
- x1+x2=2(m+1) (2)
(*) (x1+m)(x2+m)=3m^2+12
<=>x1*x2+m(x1+x2)=3m^2+12 (**)
thay (1);(2) vô (**) =>....
Mình bày hướng có chỗ nào sai tự sửa
\(\text{Δ}=\left[-2\left(m-2\right)\right]^2-4\cdot1\cdot\left(3m-3\right)\)
\(=\left(2m-4\right)^2-4\left(3m-3\right)\)
\(=4m^2-16m+16-12m+12\)
\(=4m^2-28m+28\)
Để phương trình có hai nghiệm thì Δ>=0
=>\(4m^2-28m+28>=0\)
\(\Leftrightarrow4m^2-2\cdot2m\cdot7+49-21>=0\)
=>\(\left(2m-7\right)^2>=21\)
=>\(\left[{}\begin{matrix}2m-7>=\sqrt{21}\\2m-7< =-\sqrt{21}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>=\dfrac{7+\sqrt{21}}{2}\\m< =\dfrac{7-\sqrt{21}}{2}\end{matrix}\right.\)
\(\left|x_1\right|-\left|x_2\right|=6\)
=>\(\left(\left|x_1\right|-\left|x_2\right|\right)^2=36\)
=>\(x_1^2+x_2^2-2\left|x_1x_2\right|=36\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=36\)
=>\(\left(-2m+4\right)^2-2\left(3m-3\right)-2\left|3m-3\right|=36\)
=>\(4m^2-16m+16-6m+6-6\left|m-1\right|=36\)
=>\(4m^2-22m+22-36=6\left|m-1\right|\)
=>\(6\left|m-1\right|=4m^2-22m-14\)(1)
TH1: m>=1
(1) tương đương với \(4m^2-22m-14=6\left(m-1\right)\)
=>\(4m^2-22m-14-6m+6=0\)
=>\(4m^2-28m-8=0\)
=>\(m^2-7m-2=0\)
=>\(\left[{}\begin{matrix}m=\dfrac{7+\sqrt{57}}{2}\left(nhận\right)\\m=\dfrac{7-\sqrt{57}}{2}\left(loại\right)\end{matrix}\right.\)
TH2: m<1
(1) tương đương với: \(4m^2-22m-14=6\left(1-m\right)\)
=>\(4m^2-22m-14=6-6m\)
=>\(4m^2-16m-20=0\)
=>m^2-4m-5=0
=>(m-5)(m+1)=0
=>\(\left[{}\begin{matrix}m-5=0\\m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=5\left(loại\right)\\m=-1\left(nhận\right)\end{matrix}\right.\)
x=0.5
Bạn cứ yên tâm dj chắc chắn là đúg!!! hjhj
NHƯNG GIẢI THẾ NÀO VẬY BẠN