K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2022

\(\Sigma\sqrt{\dfrac{a^3}{a^3+\left(b+c\right)^3}}=\Sigma\sqrt{\dfrac{1}{1+\left(\dfrac{b+c}{a}\right)^3}}\)\(\left(1\right)\)

\(đặt:\left(\left(\dfrac{b+c}{a}\right)^{ };\left(\dfrac{c+a}{b}\right)^{ };\left(\dfrac{a+b}{c}\right)^{ }\right)=\left(x;y;z\right)\)

\(\left(1\right)\Leftrightarrow\sqrt{\dfrac{1}{1+x^3}}+\sqrt{\dfrac{1}{1+y^3}}+\sqrt{\dfrac{1}{1+z^3}}=\sqrt{\dfrac{1}{\left(x+1\right)\left(x^2-x+1\right)}}+\sqrt{\dfrac{1}{\left(y+1\right)\left(y^2-y+1\right)}}+\sqrt{\left(z+1\right)\left(z^2-z+1\right)}\)

\(\sqrt{\dfrac{1}{\left(x+1\right)\left(x^2-x+1\right)}}\ge\dfrac{1}{\dfrac{x+1+x^2-x+1}{2}}=\dfrac{2}{x^2+2}\)

\(tương\) \(tự\Rightarrow\left(1\right)\ge\dfrac{2}{x^2+2}+\dfrac{2}{y^2+2}+\dfrac{2}{z^2+2}\)

\(=\dfrac{2}{\left(\dfrac{b+c}{a}\right)^2+2}+\dfrac{2}{\left(\dfrac{c+a}{b}\right)^2+2}+\dfrac{2}{\left(\dfrac{a+b}{c}\right)^2+2}=\dfrac{2a^2}{\left(b+c\right)^2+2a^2}+\dfrac{2b^2}{\left(c+a\right)^2+2b^2}+\dfrac{2c^2}{\left(a+b\right)^2+2c^2}\)

\(bunhia\Rightarrow\left(b+c\right)^2\le2\left(b^2+c^2\right)\Rightarrow\dfrac{2a^2}{\left(b+c\right)^2+2a^2}\ge\dfrac{2a^2}{2\left(a^2+b^2\right)+2a^2}=\dfrac{a^2}{a^2+b^2+c^2}\)

\(tương\) \(tự\Rightarrow\left(1\right)\ge\dfrac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\left(đpcm\right)\)

13 tháng 3 2022
25 tháng 6 2023

bn tham khảo nha

https://hoc24.vn/cau-hoi/cho-ba-so-thuc-abc-duong-chung-minh-rangsqrtdfraca3a3leftbcright3sqrtdfracb3b3leftcaright3sqrtdfracc3c.5222680437292

25 tháng 6 2023

Xem lại câu hỏi

đúng r ạ !!

24 tháng 11 2017

Lớn hơn hoặc = 1

25 tháng 11 2017

mạng có đó tương tự như z mà làm theo !!

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Bài 1:

Áp dụng BĐT AM-GM ta có:

$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}$

$\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}$

Cộng theo vế và thu gọn:

$\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$

$\Leftrightarrow 3\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$

$\Rightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Bài 2:

$a^3+a^3+a^3+a^3+b^3+c^3\geq 6\sqrt[6]{a^{12}b^3c^3}=6a^2\sqrt{bc}$

$b^3+b^3+b^3+b^3+a^3+c^3\geq 6b^2\sqrt{ac}$

$c^3+c^3+c^3+c^3+a^3+b^3\geq 6c^2\sqrt{ab}$

Cộng theo vế và rút gọn thu được:

$a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}$ 

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c$

28 tháng 6 2021

hmmm-khó đấy

 

NV
28 tháng 6 2021

Đề bài hình như bị sai em, thay điểm rơi ko thỏa mãn

Biểu thức là \(a+b+\sqrt{2\left(a+c\right)}\) mới đúng

31 tháng 8 2021

Tham Khao

a) Áp dụng BĐT AM-GM ta có:
(a + b) ≥ 2√ab
(b + c) ≥ 2√bc
(c + a) ≥ 2√ca
Vì a,b,c > 0 nên nhân vế với vế 3 BĐT trên ta được:
(a + b)(b + c)(c + a) ≥ 8√a^2b^2c^2 =8abc (đpcm)
Dấu = xảy ra <=> a=b=c