K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2022

a)Vì AE là phân giác của góc BAC nên góc EAB=góc EBA

=> tg EAB cân tại E mà có EK là đg cao nên EK đồng thời là trung tuyên nên AK=BK

b)Xét tg ABC vuông tại C và tg BAD vuông tại D có

   AB chung

   ABC=BAD=30 độ

=> tg BAD=tg ABC(ch-gn)

=>AD=BC

a: XétΔACE vuông tại C và ΔAKE vuông tại K có

AE chung

\(\widehat{CAE}=\widehat{KAE}\)

Do đó: ΔACE=ΔAKE

=>EC=EK

=>E nằm trên đường trung trực của CK(1)

Ta có: ΔACE=ΔAKE

=>AC=AK

=>A nằm trên đường trung trực của CK(2)

Từ (1) và (2) suy ra AE là đường trung trực của CK

=>AE\(\perp\)CK

b: Ta có: ΔCAB vuông tại C

=>\(\widehat{CAB}+\widehat{CBA}=90^0\)

=>\(\widehat{CBA}=90^0-60^0=30^0\)

Ta có: AE là phân giác của góc CAB

=>\(\widehat{CAE}=\widehat{BAE}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^0}{2}=30^0\)

Xét ΔEAB có \(\widehat{EAB}=\widehat{EBA}\)

nên ΔEAB cân tại E

Ta có: ΔEAB cân tại E

mà EK là đường cao

nên K là trung điểm của AB

=>KA=KB

c: Ta có: EB=EA

EA>AC(ΔAEC vuông tại C)

Do đó: EB>AC

d: Gọi giao điểm của BD và AC là H

Xét ΔHAB có

AD,BC là các đường cao

AD cắt BC tại E

Do đó: E là trực tâm của ΔHAB

=>HE\(\perp\)AB

mà EK\(\perp\)AB

và HE,EK có điểm chung là E

nên H,E,K thẳng hàng

=>AC,BD,KE đồng quy tại H

24 tháng 11 2021

undefined

loading...  loading...  

a: Xét ΔEAB có góc EAB=góc EBA

nên ΔEAB can tại E

mà EK là đường cao

nên K là trung điểm của AB

=>KA=KB

b: Xét ΔAEC vuông tại C và ΔBED vuông tại D có

EA=EB

góc AEC=góc BED

=>ΔAEC=ΔBED

=>EC=ED

=>AD=BC

16 tháng 5 2021

AK làm sao bằng KB được

14 tháng 7 2021

a) Ta có AEAE là phân giác ˆBAC⇒ˆEAK=30o

⇒ˆAEK=60o⇒AEK^=60o (vì ΔAEK⊥K và có ˆEAK=30o)

Tương tự, có ˆEBK=30o (vì ΔABC⊥C và có ˆA=60)

ˆKEB=60o

Xét hai tam giác vuông ΔAEK và ΔKEB có:

ˆAEK=ˆKEB=60o (cmt)

EKEK chung

ˆEKB=ˆEKA=90o

⇒ΔAEK=ΔBEK (g.c.g)

⇒AK=KB (hai cạnh tương ứng)

b) Có ˆDAB=30o (cmt) ⇒ˆABD=60o (ΔADB⊥D)

Xét hai tam giác vuông ΔABC và ΔABD có:

ABAB chung

ˆBAC=ˆABD=60o ( gt + cmt)

ˆDAB=ˆABC=30o (g.c.g)

⇒ΔABC=ΔABD

⇒AD=BC (hai cạnh tương ứng)

image

14 tháng 7 2021

a) Ta có AEAE là phân giác ˆBAC⇒ˆEAK=30oBAC^⇒EAK^=30o

⇒ˆAEK=60o⇒AEK^=60o (vì ΔAEK⊥KΔAEK⊥K và có ˆEAK=30oEAK^=30o)

Tương tự, có ˆEBK=30oEBK^=30o (vì ΔABC⊥CΔABC⊥C và có ˆA=60oA^=60o)

ˆKEB=60oKEB^=60o

Xét hai tam giác vuông ΔAEKΔAEK và ΔKEBΔKEB có:

ˆAEK=ˆKEB=60oAEK^=KEB^=60o (cmt)

EKEK chung

ˆEKB=ˆEKA=90oEKB^=EKA^=90o

⇒ΔAEK=ΔBEK⇒ΔAEK=ΔBEK (g.c.g)

⇒AK=KB⇒AK=KB (hai cạnh tương ứng)

b) Có ˆDAB=30oDAB^=30o (cmt) ⇒ˆABD=60o⇒ABD^=60o (ΔADB⊥DΔADB⊥D)

Xét hai tam giác vuông ΔABCΔABC và ΔABDΔABD có:

ABAB chung

ˆBAC=ˆABD=60oBAC^=ABD^=60o ( gt + cmt)

ˆDAB=ˆABC=30oDAB^=ABC^=30o (g.c.g)

⇒ΔABC=ΔABD⇒ΔABC=ΔABD

⇒AD=BC⇒AD=BC (hai cạnh tương ứng)

image