K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 10 2021

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2-6xy+2y^2=6\\x^2+2xy-2y^2=6\end{matrix}\right.\)

\(\Rightarrow3x^2-8xy+4y^2=0\)

\(\Rightarrow\left(3x-2y\right)\left(x-2y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{3}{2}x\\y=\dfrac{1}{2}x\end{matrix}\right.\)

Thế vào pt đầu...

7 tháng 10 2021

\(\left\{{}\begin{matrix}2x^2-3xy+y^2=3\\x^2+2xy-2y^2=6\end{matrix}\right.\)\(\left(1\right)\)\(\Leftrightarrow\left\{{}\begin{matrix}4x^2-6xy+2y^2=6\\x^2+2xy-2y^2=6\end{matrix}\right.\)

\(\Leftrightarrow3x^2-8xy+4y^2=0\)

\(\Leftrightarrow3x\left(x-2y\right)-2y\left(x-2y\right)=0\)

\(\Leftrightarrow\left(x-2y\right)\left(3x-2y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=\dfrac{2y}{3}\end{matrix}\right.\)

Thay vào \(\left(1\right)\) ta được:

\(\Leftrightarrow\left[{}\begin{matrix}2.\left(2y\right)^2-3.2y.y+y^2=3\\2.\left(\dfrac{2y}{3}\right)^2-3.\dfrac{2y}{3}.y+y^2=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}y^2=1\\y^2=-27\left(VLý\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\end{matrix}\right.\)

Vậy ... 

 

7 tháng 11 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=2y+4\\-4y-8+5y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\cdot5+4=14\\y=5\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}5x-30+6x=3\\y=10-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\6y-12+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{7}\\y=\dfrac{19}{7}\end{matrix}\right.\)

NV
27 tháng 3 2021

a. ĐKXĐ: ..

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(2x+5y\right)}-\sqrt{2\left(x+y\right)}=4\\x+2y+\dfrac{2\sqrt{\left(x+y\right)\left(2x+5y\right)}}{3}=24\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\sqrt{2\left(2x+5y\right)}=a\ge0\\\sqrt{2\left(x+y\right)}=b\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a-b=4\\\dfrac{a^2+b^2}{6}+\dfrac{ab}{3}=24\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=4\\\left(a+b\right)^2=144\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=4\\\left[{}\begin{matrix}a+b=12\\a+b=-12\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(8;4\right)\\\left(a;b\right)=\left(-4;-8\right)\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2\left(2x+5y\right)=64\\2\left(x+y\right)=16\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
27 tháng 3 2021

b.

Thế pt trên xuống dưới:

\(x^4+6y^4=\left(x+2y\right)\left(x^3+3y^3-2xy^2\right)\)

\(\Leftrightarrow2x^3y-2x^2y^2-xy^3=0\)

\(\Leftrightarrow xy\left(2x^2-2xy-y^2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\y=-\left(1+\sqrt{3}\right)x\\y=\left(-1+\sqrt{3}\right)x\end{matrix}\right.\)

Thế vào pt đầu ...

Đề cho hơi xấu, nếu pt đầu là \(x^3+3y^3-2x^2y=1\) thì đẹp hơn nhiều

7 tháng 11 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\2y+10+y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{16}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}3x=1-2y\\1-2y+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\3y+6+2y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

a) Ta có: \(\left\{{}\begin{matrix}-x+2y=3\\3x+y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3x+6y=9\\3x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=8\\-x+2y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{8}{7}\\-x=3-2y=3-2\cdot\dfrac{8}{7}=\dfrac{5}{7}\end{matrix}\right.\)

hay \(\left\{{}\begin{matrix}x=-\dfrac{5}{7}\\y=\dfrac{8}{7}\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-\dfrac{5}{7}\\y=\dfrac{8}{7}\end{matrix}\right.\)

b) Ta có: \(\left\{{}\begin{matrix}2x+2\sqrt{3}\cdot y=1\\\sqrt{3}x+2y=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{3}x+6y=\sqrt{3}\\2\sqrt{3}x+4y=-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y=\sqrt{3}+10\\\sqrt{3}x+2y=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{\sqrt{3}+10}{2}\\x\sqrt{3}+2\cdot\dfrac{\sqrt{3}+10}{2}=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{\sqrt{3}+10}{2}\\x\sqrt{3}=-5-\sqrt{3}-10=-15-\sqrt{3}\end{matrix}\right.\)

hay \(\left\{{}\begin{matrix}x=-1-5\sqrt{3}\\y=\dfrac{\sqrt{3}+10}{2}\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-1-5\sqrt{3}\\y=\dfrac{\sqrt{3}+10}{2}\end{matrix}\right.\)

24 tháng 1 2021

a, \(\left\{{}\begin{matrix}\\6x+2y=-2\end{matrix}\right.-6x+12y=18}\)

NV
12 tháng 12 2020

Đề bài chắc sai bạn:

\(2x^2+y^2+1=2xy\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+x^2+1=0\)

\(\Leftrightarrow\left(x-y\right)^2+x^2+1=0\) (vô lý)

Hệ vô nghiệm

NV
23 tháng 10 2021

a.

\(2x^3-x^2y+x^2+y^2-2xy-y=0\)

\(\Leftrightarrow x^2\left(2x-y+1\right)-y\left(2x-y+1\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)\left(2x-y+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-y=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x^2\\y=2x+1\end{matrix}\right.\)

Thế vào pt đầu:

\(\left[{}\begin{matrix}x^3+x-2=0\\x\left(2x+1\right)+x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x^2+x+2\right)=0\\x^2+x-1=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

 

NV
23 tháng 10 2021

b.

\(x^2-2xy+x=-y\)

Thế vào \(y^2\) ở pt dưới:

\(x^2\left(x^2-4y+3\right)+\left(x^2-2xy+x\right)^2=0\)

\(\Leftrightarrow x^2\left(x^2-4y+3\right)+x^2\left(x-2y+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x^2-4y+3+\left(x-2y+1\right)^2=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x^2-4xy+2x+4y^2-8y+4=0\)

\(\Leftrightarrow2\left(x^2-2xy+x\right)+4y^2-8y+4=0\)

\(\Leftrightarrow-2y+4y^2-8y+4=0\)

\(\Leftrightarrow...\)

12 tháng 12 2020

Ta có: \(\left\{{}\begin{matrix}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy=6x+6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+xy\right)^2=2x+9\\x^2+2xy=6x+6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+xy\right)^2=2x+9\\xy=3x+3-\dfrac{x^2}{2}\end{matrix}\right.\) \(\Rightarrow\left(\dfrac{x^2}{2}+3x+3\right)^2=2x+9\)( đến đây là phương trình 1 ẩn rồi, tự giải tiếp)