Cho P= 12017+22017+32017+...+20172017, Q=1+2+3+...+2017
Chứng minh rằng P chia hết cho Q
Cần gấp nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chậc ... hình như đề bài có vấn đề vì: p^2 chia 3 dư 1 (p ko chia hết cho 3 )
q^2 chia 3 dư 1
=> p^2 +q^2 ko chia hết cho 3 => ko chia hết cho 24
a)ta có 74n-1 = (74)n-1 = 2401n - 1 = ...1-1=...0 \(⋮\) 10 { vì 2041 có tận cùng bằng 1 nên 2041 mũ mấy cũng có tận cùng bằng 1 nên 2041n có tận cùng bằng 1}
b) ta có 92n+1+1 = (92)n . 9 + 1 = 81n .9 +1 = ..1 .9 +1=..9+1=..0 \(⋮\)10 { vì 81 có tận cùng bằng 1 nên 81 mũ mấy cũng có tận cùng bằng 1 nên 81n có tận cùng bằng 1}
cho mik mik giải nốt bài 2 cho
87-218=(23)7-218=221-218=217.(24-2)=217.14
Vậy 87-218 chia hết cho 14
Ta có: 87 - 218 = (23)7 - 218 = 221 - 218 = 218 ( 23 - 1 ) = 218. 7 = 217 . 14
=> 87 - 218 chia hết cho 14
\(S=1+2+2^2+...+2^{99}\)
\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)
\(S=3+2^2.3+...+2^{98}.3\)
\(=3\left(1+2^2+...+2^{98}\right)⋮3\)
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
12017+22017+32017+...+20172017
=(1+2+3+...+2017)(12016-22015.3+...+20172016) chia hết cho 1+2+3+...+2017
Bạn làm sai rồi nhé