cho tam giác mnp vuông tại m ,biết đường cao ME=8cm MN=10cm .tính diện tích tam giác MEB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: NP=10cm
MP=căn 10^2-6^2=8cm
ME=6*8/10=4,8cm
NE=MN^2/NP=3,6cm
PE=10-3,6=6,4cm
a) Xét ΔMNP và ΔHMP có:
Góc MPN chung
Góc NMP = góc MHP (= \(90^o\))
⇒ ΔMNP ~ ΔHMP (g.g)
b) Áp dụng định lí Pytago vào Δ vuông MNP:
\(MP^2=NP^2-MN^2\)
\(MP^2=10^2-6^2\)
\(MP^2=64\)
⇒ MP = 8
Xét ΔMNP có ND là phân giác ⇒ \(\dfrac{MD}{MN}=\dfrac{DP}{NP}\)
hay \(\dfrac{MD}{6}=\dfrac{DP}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{MD}{6}=\dfrac{DP}{10}=\dfrac{MD+DP}{6+10}=\dfrac{MP}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
⇒ \(\dfrac{DP}{10}=\dfrac{1}{2}\) ⇒ DP = \(\dfrac{10}{2}\) = 5
a: Xét tứ giác HDNC có
\(\widehat{HDN}=\widehat{HCN}=\widehat{DHC}=90^0\)
Do đó: HDNC là hình chữ nhật
a: Xét tứ giác HDNC có
ˆHDN=ˆHCN=ˆDHC=900HDN^=HCN^=DHC^=900
Do đó: HDNC là hình chữ nhật
\(NP=4,5+6=10,5\left(cm\right)\)
Áp dụng tích chất đường phân giác:
\(\frac{MN}{NE}=\frac{MP}{EP}\Leftrightarrow\frac{MN}{4,5}=\frac{MP}{6}\Leftrightarrow MN=\frac{3}{4}MP\).
Áp dụng định lí Pythagore:
\(NP^2=MP^2+MN^2\)
\(\Leftrightarrow10,5^2=MP^2+\left(\frac{3}{4}MP\right)^2\Leftrightarrow MP=8,4\Rightarrow MN=6,3\)
\(MH=\frac{MN.MP}{NP}=\frac{8,4.6,3}{10,5}=5,04\)
\(NH=\frac{MN^2}{NP}=\frac{6,3^2}{10,5}=3,78\)
\(HE=NE-NH=4,5-3,78=0,72\)
\(S_{MHE}=\frac{1}{2}.MH.HE=\frac{1}{2}.0,72.5,04=1,8144\left(cm^2\right)\)
6:
a: AB^2=BH*BC
=>BH(BH+6,4)=6^2
=>BH=3,6cm
b: AC=căn 6,4*10=8cm
Xét ΔMNP vuông tại M có MH là đường caop
nên \(NM^2=NH\cdot NP\)
=>\(NP\cdot7=10^2=100\)
=>\(NP=\dfrac{100}{7}\left(cm\right)\)
ΔMNP vuông tại M
=>\(MN^2+MP^2=NP^2\)
=>\(MP^2=NP^2-MN^2=\left(\dfrac{100}{7}\right)^2-10^2=\dfrac{5100}{49}\)
=>\(MP=\dfrac{10\sqrt{51}}{7}\left(cm\right)\)
\(\widehat{HMP}+\widehat{HMN}=90^0\)
\(\widehat{HMN}+\widehat{N}=90^0\)
=>\(\widehat{HMP}=\widehat{N}\)
Xét ΔMNP vuông tại M có \(sinN=\dfrac{MP}{NP}\)
=>\(sinHMP=\dfrac{10\sqrt{51}}{7}:\dfrac{100}{7}=\dfrac{\sqrt{51}}{10}\)