K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2020

Ta có:

+) \(\left(2n^2+n+2\right)^2=4n^4+4n^3+9n^2+4n+4>4n^4+4n^3+6n^2+3n+2\)

     Giải thích: \(3n^2+n+2>0\forall n\inℤ\)

+)\(4n^4+4n^3+6n^2+3n+2>4n^4+4n^3+5n^2+2n+1=\left(2n^2+n+1\right)^2\)

     Giải thích: \(n^2+n+1>0\forall n\inℤ\)

Ta thấy \(4n^4+4n^3+6n^2+3n+2\)bị kẹp giữa 2 số chính phương liên tiếp nên không thể là số chính phương

24 tháng 7 2020

làm sao bạn tìm ra hai bình phương kẹp A ở giữa thế bạn, chỉ mik với?

30 tháng 11 2018

Giả sử \(4n^4+4n^3+6n^2+3n+2\) là một số chính phương

Đặt A2=\(4n^4+4n^3+6n^2+3n+2\)

Ta có \(A^2=4n^4+4n^3+6n^2+3n+2=\left(4n^4+4n^3+5n^2+2n+1\right)+\left(n^2+n+1\right)=\left(4n^4+n^2+1+4n^3+4n^2+2n\right)+\left(n^2+n+1\right)=\left(2n^2+n+1\right)^2+\left(n^2+n+1\right)\)

Ta có \(n^2+n+1>0\)

Vậy \(A^2>\left(2n^2+n+1\right)^2\Leftrightarrow A>2n^2+n+1\left(1\right)\)

Ta có \(A^2=4n^4+4n^3+6n^2+3n+2=\left(4n^4+4n^3+9n^2+4n+4\right)-\left(3n^2+n+2\right)=\left(4n^4+n^2+4+4n^3+8n^2+4n\right)-\left(3n^2+n+2\right)=\left(2n^2+n+2\right)^2-\left(3n^2+n+2\right)\)

Ta có \(3n^2+n+2>0\)

Vậy \(A^2< \left(2n^2+n+1\right)^2\Leftrightarrow A< 2n^2+n+1\left(2\right)\)

Từ (1),(2)\(\Leftrightarrow2n^2+n+1< A< 2n^2+n+2\)(vô lý với n\(\in Z\))

Vậy trái với giả sử

Vậy \(4n^4+4n^3+6n^2+3n+2\) không là số chính phương với \(n\in Z\)

26 tháng 10 2021

a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)

Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau