K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2022

Ta có \(\dfrac{-3x^5y^3z^2}{2x^3yz}=-\dfrac{3}{2}x^2y^2z\)

Để 2 biểu thức trái dấu thì \(-\dfrac{3}{2}x^2y^2z< 0\Rightarrow x^2y^2z>0\) mà \(x^2y^2>0\)

nên \(z>0\).

\(\text{x^3.y^2.z (1)}\)

\(\text{2.x^3.y.z^2 (2)}\)

\(\text{-3.x^2.y.z.t (3)}\)

\(\text{x.y^2.z.t^3 (4)}\)

\(\text{a)Qua 2 đơn thức (1);(2) ta có :}\)

\(x.z>0\) (Để đơn thức là dương)

\(x.y>0\)(Để đơn thức là dương)

\(=>y.z>0\)

\(\text{Qua đơn thức (3) ta có :}\)

\(\text{t<0 (Để đơn thức là dương)}\)

\(=>t^3< 0\)

\(\text{Qua đơn thức (4) ta có :}\)

x.z<0 (Để đơn thức là dương)

Nhưng x.z > 0 (Theo biểu thức (1);(2)

=> Cả 4 đơn thức ko thể cùng dương

*phần b làm tương tự

*Bài này phông chữ bị lỗi phần cuối nên cố nhìn nhé --'

#ht

1 tháng 8 2023

a, đều cùng có giá trị dương:
- Để các đơn thức có giá trị dương, ta cần xác định dấu của các biến x, y, z, t.
- Trong các đơn thức đã cho, chỉ có đơn thức thứ nhất (x^3y^2z) không có dấu trừ.
- Vậy, ta có thể xác định dấu của x, y, z, t là dương.

b, đều có giá trị âm thanh giống nhau:
- Để các đơn thức có giá trị âm thanh giống nhau, ta cần xác định dấu của các biến x, y, z, t.
- Trong các đơn thức đã cho, chỉ có đơn thức thứ ba (-3x^2yzt) có dấu trừ.
- Vậy, ta có thể xác định dấu của x, y, z, t là âm

25 tháng 5 2018

khong xui thi sao

7 tháng 3 2019

bn vào câu hỏi tương tự đóa