Tìm x :
\(\frac{x=2015}{2016}+\frac{x+2016}{2015}+\frac{x+2017}{2014}=-3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{x+4}{2014}+1\right)+\left(\frac{x+3}{2015}+1\right)=\left(\frac{x+2}{2016}+1\right)+\left(\frac{x+1}{2017}+1\right)\)
\(\frac{x+2018}{2014}+\frac{x+2018}{2015}-\frac{x+2018}{2016}+\frac{x+2018}{2017}=0\)
\(x+2018.\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\right)=0\)
\(\Rightarrow x+2018=0\)
\(\Rightarrow x=-2018\)
\(\frac{x+4}{2014}+\frac{x+3}{2015}=\frac{x+2}{2016}+\)\(\frac{x+1}{2017}\)
\(\Rightarrow\left(\frac{x+4}{2014}+1\right)+\left(\frac{x+3}{2015}+1\right)=\left(\frac{x+2}{2016}+1\right)+\left(\frac{x+1}{2017}+1\right)\)
\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2015}=\frac{x+2018}{2016}+\frac{x+2018}{2017}\)
\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2015}-\frac{x+2018}{2016}-\frac{x+2018}{2017}=0\)
\(\Rightarrow\left(x+2018\right)\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)=0\)
\(M\text{à:}\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2016}-\frac{1}{2017}\ne0\)
\(\Rightarrow x+2018=0\Rightarrow x=-2018\)
Ta có :
\(\frac{x-1}{2017}+\frac{x-2}{2016}+\frac{x-3}{2015}+\frac{x-4}{2014}=2^2\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2017}-1\right)+\left(\frac{x-2}{2016}-1\right)+\left(\frac{x-3}{2015}-1\right)+\left(\frac{x-4}{2014}-1\right)=2^2-4\)
\(\Leftrightarrow\)\(\frac{x-2018}{2017}+\frac{x-2018}{2016}+\frac{x-2018}{2015}+\frac{x-2018}{2014}=4-4\)
\(\Leftrightarrow\)\(\left(x-2018\right)\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}\right)=0\)
Vì \(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}\ne0\)
Nên \(x-2018=0\)
\(\Rightarrow\)\(x=2018\)
Vậy \(x=2018\)
Chúc bạn học tốt ~
\(\frac{x-1}{2017}+\frac{x-2}{2016}+\frac{x-3}{2015}+\frac{x-4}{2014}=2^2\)
\(\left(\frac{x-1}{2017}-1\right)+\left(\frac{x-2}{2016}-1\right)+\left(\frac{x-3}{2015}-1\right)+\left(\frac{x-4}{2014}-1\right)=0\)
\(\frac{x-2018}{2017}+\frac{x-2018}{2016}+\frac{x-2018}{2015}+\frac{x-2018}{2014}=0\)
\(\left(x-2018\right).(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014})=0\)
\(x-2018=0\left(Vì\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}\ne0\right)\)
\(\Rightarrow x=2018\)
\(b)\) \(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{97.101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(1-\frac{1}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(\frac{100}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(100=2x+4\)
\(\Leftrightarrow\)\(2x=96\)
\(\Leftrightarrow\)\(48\)
Vậy \(x=48\)
Chúc bạn học tốt ~
\(a)\) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{47.49}=\frac{24}{x+1}\)
\(\Leftrightarrow\)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{47.49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{47}-\frac{1}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(1-\frac{1}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(\frac{48}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(49=x+1\)
\(\Leftrightarrow\)\(x=48\)
Vậy \(x=48\)
Chúc bạn học tốt ~
\(\frac{x+1}{2016}-\frac{x+2}{2015}=\frac{x+2017}{2014}\)
\(\frac{x+1+2016}{2016}-\frac{x+2+2015}{2015}-\frac{x+2017}{2014}=0\)
\(\frac{x+2017}{2016}-\frac{x+2017}{2015}-\frac{x+2017}{2014}=0\)
\(\left(x+2017\right)\left(\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}\right)=0\)
Vì \(\left(\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}\right)\ne0\)
\(\Rightarrow x+2017=0\)
\(\Rightarrow x=-2017\)
PT đã cho tương đương với:
\(\left(\frac{x}{2017}+1\right)+\left(\frac{x+1}{2016}+1\right)=\left(\frac{x+2}{2015}+1\right)+\left(\frac{x+3}{2014}+1\right)\)
\(\Leftrightarrow\frac{x+2017}{2017}+\frac{x+2017}{2016}=\frac{x+2017}{2015}+\frac{x+2017}{2014}\)
\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2017}+\frac{1}{2016}\right)=\left(x+2017\right)\left(\frac{1}{2015}+\frac{1}{2014}\right)\)
\(\Leftrightarrow x+2017=0\Leftrightarrow x=-2017\)
\(\frac{x+2015}{2016}+\frac{x+2016}{2015}+\frac{x+2017}{2014}=-3\)
\(\Leftrightarrow\frac{x+2015}{2016}+1+\frac{x+2016}{2015}+1+\frac{x+2017}{2014}+1=0\)
\(\Leftrightarrow\frac{x+4031}{2016}+\frac{x+4031}{2015}+\frac{x+4031}{2014}=0\)
\(\Leftrightarrow\left(x+4031\right)\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}\right)=0\)
Có: \(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}\ne0\)
\(\Rightarrow x+4031=0\)
\(\Rightarrow x=-4031\)