Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{x+4}{2014}+1\right)+\left(\frac{x+3}{2015}+1\right)=\left(\frac{x+2}{2016}+1\right)+\left(\frac{x+1}{2017}+1\right)\)
\(\frac{x+2018}{2014}+\frac{x+2018}{2015}-\frac{x+2018}{2016}+\frac{x+2018}{2017}=0\)
\(x+2018.\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\right)=0\)
\(\Rightarrow x+2018=0\)
\(\Rightarrow x=-2018\)
\(\frac{x+4}{2014}+\frac{x+3}{2015}=\frac{x+2}{2016}+\)\(\frac{x+1}{2017}\)
\(\Rightarrow\left(\frac{x+4}{2014}+1\right)+\left(\frac{x+3}{2015}+1\right)=\left(\frac{x+2}{2016}+1\right)+\left(\frac{x+1}{2017}+1\right)\)
\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2015}=\frac{x+2018}{2016}+\frac{x+2018}{2017}\)
\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2015}-\frac{x+2018}{2016}-\frac{x+2018}{2017}=0\)
\(\Rightarrow\left(x+2018\right)\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)=0\)
\(M\text{à:}\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2016}-\frac{1}{2017}\ne0\)
\(\Rightarrow x+2018=0\Rightarrow x=-2018\)
\(\frac{x+1}{2016}-\frac{x+2}{2015}=\frac{x+2017}{2014}\)
\(\frac{x+1+2016}{2016}-\frac{x+2+2015}{2015}-\frac{x+2017}{2014}=0\)
\(\frac{x+2017}{2016}-\frac{x+2017}{2015}-\frac{x+2017}{2014}=0\)
\(\left(x+2017\right)\left(\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}\right)=0\)
Vì \(\left(\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}\right)\ne0\)
\(\Rightarrow x+2017=0\)
\(\Rightarrow x=-2017\)
a) \(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)
\(\Leftrightarrow\frac{x+2015}{5}+\frac{5}{5}+\frac{x+2016}{4}+\frac{4}{4}=\frac{x+2017}{3}+\frac{3}{3}+\frac{x+2018}{2}+\frac{2}{2}\)
\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2002}{2}\)
\(\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)
\(\Leftrightarrow\left(x+2020\right).\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)
\(\Leftrightarrow x+2020=0\)
\(\Leftrightarrow x=-2020\)
Vậy : \(x=-2020\)
Chúc bạn học tốt !!
a) \(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\\ \left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\\ \frac{x+2020}{5}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2020}{2}\\ \frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\\ \left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\\ \Rightarrow x+2020=0\\ \Rightarrow x=-2020\)
Vậy x = -2020
b) \(\frac{x+2015}{5}+\frac{x+2016}{6}=\frac{x+2017}{7}+\frac{x+2018}{8}\\ \left(\frac{x+2015}{5}-1\right)+\left(\frac{x+2016}{6}-1\right)=\left(\frac{x+2017}{7}-1\right)+\left(\frac{x+2018}{8}-1\right)\\ \frac{x+2010}{5}+\frac{x+2010}{6}=\frac{x+2010}{7}+\frac{x+2010}{8}\\ \frac{x+2010}{5}+\frac{x+2010}{6}-\frac{x+2010}{7}-\frac{x+2010}{8}=0\\ \left(x+2010\right)\left(\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}\right)=0\\ \Rightarrow x+2010=0\\ \Rightarrow x=-2010\)
Vậy x = -2010
\(\frac{x}{2016}+\frac{x+1}{2015}+\frac{x+2}{2014}=-3\)
\(\Leftrightarrow\frac{x}{2016}+1+\frac{x+1}{2015}+1+\frac{x+2}{2014}+1=0\)
\(\Leftrightarrow\frac{x+2016}{2016}+\frac{x+2016}{2015}+\frac{x+2016}{2014}=0\)
\(\Leftrightarrow x+2016\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}\right)=0\)
Có: \(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}>0\)
\(\Rightarrow x+2016=0\Rightarrow x=-2016\)
\(\frac{x+1}{2018}+\frac{x+2}{2017}+\frac{x+3}{2016}=\frac{x+4}{2015}+\frac{x+5}{2014}+\frac{x+6}{2013}\)
\(\Leftrightarrow\) \(\frac{x+1}{2018}+1+\frac{x+2}{2017}+1+\frac{x+3}{2016}+1=\frac{x+4}{2015}+1+\frac{x+5}{2014}+1+\frac{x+6}{2013}+1\)
\(\Leftrightarrow\frac{x+2019}{2018}+\frac{x+2019}{2017}+\frac{x+2019}{2016}=\frac{x+2019}{2015}+\frac{x+2019}{2014}+\frac{x+2019}{2013}\)
\(\Leftrightarrow\frac{x+2019}{2018}+\frac{x+2019}{2017}+\frac{x+2019}{2016}-\frac{x+2019}{2015}-\frac{x+2019}{2014}-\frac{x+2019}{2013}=0\)
\(\Leftrightarrow\left(x+2019\right)\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)\)\(=0\)
Lại có: \(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\) \(\ne\) \(0\)
\(\Rightarrow x+2019=0\)
\(\Rightarrow x=0-2019=-2019\)
Vậy x= -2019
\(\Rightarrow\frac{x+5}{2015}+1+\frac{x+4}{2016}+1+\frac{x+3}{2017}+1=\frac{x+2015}{5}+1+\frac{x+2016}{4}+1+\frac{x+2017}{3}+1\)
\(\Rightarrow\frac{x+2020}{2015}+\frac{x+2020}{2016}+\frac{x+2020}{2017}=\frac{x+2020}{5}+\frac{x+2020}{4}+\frac{x+2020}{3}\)
\(\Rightarrow\left(x+2020\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
\(\Rightarrow x=-2020\)
\(\frac{x+2015}{2016}+\frac{x+2016}{2015}+\frac{x+2017}{2014}=-3\)
\(\Leftrightarrow\frac{x+2015}{2016}+1+\frac{x+2016}{2015}+1+\frac{x+2017}{2014}+1=0\)
\(\Leftrightarrow\frac{x+4031}{2016}+\frac{x+4031}{2015}+\frac{x+4031}{2014}=0\)
\(\Leftrightarrow\left(x+4031\right)\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}\right)=0\)
Có: \(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}\ne0\)
\(\Rightarrow x+4031=0\)
\(\Rightarrow x=-4031\)