K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2022

A C B M N D

a, Áp dụng Đ. L. py-ta-go vào tg ABC cân tại A, có:

BC2=AC2+AB2

=>152=AC2+92

     225=AC2+81

=>AC=225-81

         =144.

=>AC=12cm.

b, Xét tg ABM và tg NCM, có: 

MB=MC(M là trung điển của BC)

góc AMB= góc CMN(đối đỉnh)

AM=NM(gt)

=>tg ABM= tg NCM(c. g. c)

=>góc ABM= góc NCM(2 góc tương ứng)

c, Ta có: góc BAC+ góc DAC=180o

                 =>góc DAC= 180o- góc BAC 

                                   =180o-90o

                                   =90o

Xét tg ACB và tg ACD, có: 

AB=AD(A là trung điểm của BC)

góc BAC = góc DAC(=90o)

AC chung

=>tg ABC= tg ADC(2 cạnh góc vuông)

=>BC=DC(2 cạnh tương ứng)

=>tg CBD cân tại C(đpcm)

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A

b: MA=2,5cm

MB<AB

=>góc BAM<góc AMB

c: Xét tứ giác ABNC có

M là trung điểm chung của AN và BC

=>ABNC là hbh

mà góc BAC=90 độ

nên ABNC là hcn

=>CN vuông góc CA

29 tháng 4 2021

Cho mình xin câu trả lời đúng nhất ạ (bạn nào có thể về cho mọi hình đc ko??)

29 tháng 4 2021

Câu a

16 tháng 4 2017

a) Ta có: Trong một tam giác vuông đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh hyền.

Áp dụng vào bài, ta có:

AM=1/2 BC.\(\Rightarrow\)M là trung điểm của BC => MB=MC=MA

Mà AM=MD => MD=MB=MC

=> tam giác BMD cân tại M

tam giác AMC cân tại M

tam giác AMB cân tại M

Xét tam giác BMD và tam giác AMC có:

BM=MC(chứng minh trên)

\(\widehat{BMD}=\widehat{AMC}\)(2 góc đối đỉnh)

AM=MD(giả thiết)

=> tam giác BMD=tam giác AMC (c-g-c)

=> \(\widehat{DBM}=\widehat{MAC}\)(2 góc tương ứng)

Mà \(\widehat{MAC}+\widehat{MAB}=\widehat{BAC}=90^0\)

Mà \(\widehat{MAB}=\widehat{MBA}\)(do tam giác MAB cân tại M)

\(\Rightarrow\widehat{MAC}+\widehat{MBA}=90^0\)

\(\Rightarrow\widehat{MBD}+\widehat{DMB}=\widehat{ABD}=90^0\)

b) Xét tam giác ABC và tam giác BAD có:

AB-cạnh chung

\(\widehat{BAC}=\widehat{ABD}\left(=90^0\right)\)

AC=BD(do tam giác BMD=tam giác AMC)

=> tam giác ABC= tam giác BAD(c-g-c)

c) 

Ta có: Trong một tam giác vuông đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh hyền nên:

AM=1/2 BC

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+12^2=169\)

hay BC=13(cm)

b) Xét ΔMKC và ΔMAB có 

MK=MA(gt)

\(\widehat{KMC}=\widehat{AMB}\)(hai góc đối đỉnh)

MC=MB(M là trung điểm của BC)

Do đó: ΔMKC=ΔMAB(c-g-c)

21 tháng 3 2019

Bạn biết vẽ hình ko

a: \(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)

AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔCBD có

CA vừa là đường cao, vừa là trung tuyến

=>ΔCBD cân tại C

c: Xét ΔCDB có

BE,CA là trung tuyến

BE cắt CA tại I

=>I là trọng tâm

=>DI đi qua trung điểm của BC