\(\dfrac{4^0\cdot9^3-6^9\cdot1200}{8^4\cdot3^{12}+6^{11}}\)
Giúp mình nhé:]]]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}=\dfrac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\cdot7}=\dfrac{4}{7}\)
\(=\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{-2^{12}.3^{12}+2^{11}.3^{11}}=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{11}.3^{11}\left(-2.3+1\right)}=\frac{2^{12}.3^{10}\left(1+5\right)}{2^{11}.3^{11}.\left(-5\right)}=\frac{2.6}{3.\left(-5\right)}=-\frac{4}{5}\)
a: \(=\dfrac{\left(5^3\right)^3\cdot4^4}{5^{12}}=\dfrac{1}{5^3}\cdot4^4=\dfrac{4^4}{5^3}\)
b: \(=\dfrac{3^6}{\left[3^3\cdot2\right]^2}=\dfrac{1}{2^2}=\dfrac{1}{4}\)
c: \(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\cdot5}=\dfrac{4}{5}\)
\(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\frac{241864704+1209323520}{2176782336-362797056}=\frac{4}{5}\)
\(A=\dfrac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}-\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}\)
\(=\dfrac{2^{12}\cdot3^4\cdot2}{2^{12}\cdot3^5\cdot4}-\dfrac{5^{10}\cdot7^3\left(1-7\right)}{5^9\cdot7^3\cdot9}\)
\(=\dfrac{1}{6}-\dfrac{5\cdot\left(-6\right)}{9}=\dfrac{1}{6}+\dfrac{10}{3}=\dfrac{21}{6}=\dfrac{7}{2}\)
Sửa đề: \(C=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\right)^6\cdot3^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
\(C=\dfrac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}-\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}\)
\(=\dfrac{2^{12}\cdot3^4\cdot\left(3-1\right)}{2^{12}\cdot3^5\left(3+1\right)}-\dfrac{5^{10}\cdot7^3\left(1-7\right)}{5^9\cdot7^3\left(1+2^3\right)}\)
\(=\dfrac{2}{3\cdot4}-\dfrac{5\cdot\left(-6\right)}{9}\)
\(=\dfrac{2}{12}+\dfrac{30}{9}=\dfrac{1}{6}+\dfrac{10}{3}=\dfrac{1}{6}+\dfrac{20}{6}=\dfrac{21}{6}=\dfrac{7}{2}\)
\(\dfrac{4^0\cdot9^3-6^9\cdot1200}{8^4\cdot3^{12}+6^{11}}\)
= \(\dfrac{1\cdot\left(3^2\right)^3-\left(3\cdot2\right)^9\cdot\left(5^2\cdot2^4\cdot3\right)}{\left(2^3\right)^4\cdot3^{12}+6^{11}}\)
= \(\dfrac{3^6-3^9\cdot2^9\cdot5^2\cdot2^4\cdot3}{2^{12}\cdot3^{12}+\left(2\cdot3\right)^{11}}\)
= \(\dfrac{3^6-3^{10}\cdot2^{13}\cdot5^2}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)
như lời đã nói thì bn làm tiếp>:)))