K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2022

NGUUUUUUUU

1 tháng 5 2018

A B C H K D
a, Xét tam giác ABD và tam giác KBD có :
     BD chung
     góc ABD= góc DBK ( do BD là phân giác góc B )
     Góc BAD=góc BKD=90 độ
=) Tam giác ABD = tam giác KBD ( cạnh huyền-góc nhọn )
b, Từ tam giác ABD=tam giác KBD ( theo phần a )
=) AD=DK( 2 cạnh tương ứng ) =) Tam giác ADK cân ở D =) Góc KAD=góc DKA (1)
Mà có tổng 2 góc trong cùng phía là góc AHK và góc DKH = 90+90=180 độ
=) AH//DK =) Góc AKD = góc HAK ( So le trong ) (2)
- Từ (1) và (2) =) Góc KAD= góc HAK =) AK là phân giác góc HAC

1 tháng 5 2018

A B C H D 1 2 1 2 K

a) Xét 2 \(\Delta\)vuông ABD và KBD có:

        \(\widehat{B_1}\)\(\widehat{B_2}\)( do BD là tia phân giác \(\widehat{B}\))

        BD cạnh chung

 Vậy \(\Delta\)ABD = \(\Delta\)KBD ( ch-gn )

b) ....

mk chỉ bt làm câu A thôi, còn câu B mk ko bt. Thông cảm nha ^^

k nhá

3 tháng 4 2017

a) Có tam giác ABC vuông tại A

=>\(BC^2=AC^2+AB^2\) ( định lí Pitago)

=>\(BC^2=8^2+6^2=100\)

=> BC=10 (cm)

b) Xét tam giác vuông ABE và tam giác vuông KBE có

Cạnh BE chung

Góc DBA= góc DBK hay góc EBA= góc EBK ( vì BD là tia phân giác của góc ABC)

=> tam giác ABE= tam giác KBE( cạnh góc vuông- góc nhọn)

=> BA=BK ( 2 cạnh tương ứng)

Vạy tam giác ABK cân tại B

c) Nối D với K, ta có tam giác DKE vuông tại E

Theo câu b, ta có tam giác ABE= tam giác KBE

=> KE=EA( 2 cạnh tương ứng) và góc EAB=góc EKB (1)

Xét tam giác vuông DEA và tam giác vuông DEK có

Cạnh DE chung

EA=KE

=> tam giác DEA= tam giác DEK ( 2 cạnh góc vuông)

=> Góc DAE=góc DKE (2)

Từ (1) và (2)  =>góc DKE+ góc EKB=góc DAE+ góc EAB= góc DAB=90 độ

=> Góc DKB= 90 độ

Vậy DK vuông góc với BC

d)

Có \(DK⊥BC,AH⊥BC\) =>DK//AB

=> góc DKE= góc EAH (1)

Có tam giác DEA=tam giác DEK

=> góc DAE= góc DKE (2)

Từ (1) và (2) => góc EAH= góc DAE  hay góc CAK= góc KAH

Vậy AK là phân giác của góc HAC

4 tháng 4 2017

a) Xét tam giác vuông ABE và tam giác vuông KBE có

Cạnh BE chung

DBA=DBK hay EBA=EBA ( vì BD là phân giác của góc ABC)

=>\(\Delta ABE=\Delta KBE\) ( cạnh góc vuông- góc nhọn)

=>BA=BK

Vậy tam giác ABK cân tại B

b) Xét \(\Delta ABD\) và \(\Delta KBD\) có

AB=BK

ABD=KBD

Cạnh BD chung

=> \(\Delta ABD=\Delta KBD\left(c.g.c\right)\)

=> DKB=DAB=90 độ

Vậy \(DK⊥BC\)

c)d)

Xét \(\Delta ABI\) và \(\Delta KBI\) có

BA=BK

ABI=FBI

Cạnh BF chung

=> \(\Delta ABI=\Delta KBI\left(c.g.c\right)\)

=> IA=IK

Ta có DA=DK, IA=IK hay ID là đường trung trực của AK

=>AE=EK

Có \(DK⊥BC,AH⊥BC\)  => DK//AH

=>DKE=EAI( 2 góc so le trong)

Xét tam giác vuông DKE và tam giác vuông EAI có

AE=EK

DKE=EAI

=> \(\Delta DKE=\Delta EAI\)(cạnh góc vuông- góc nhọn)

=>DK=AI

Mà DK=DA

=>AI=AD

Xét tam giác vuông DAE và tam giác vuông IAE có

DA=DI

Cạnh AE chung

=> \(\Delta DAE=\Delta IAE\)( cạnh huyền- cạnh góc vuông)

=>DAE=EAI hay góc CAK= góc KAH

Vậy AK là phân giác của HAC

Xét tam giác vuông IKE và tam giác vuông EAD có

AE=EK

KEI=AED( 2 góc đối đỉnh)

=>\(\Delta IKE=\Delta EAD\)( cạnh góc vuông- góc nhọn)

=>IKE=EAD

Mà IKE và EAD là 2 góc so le trong =>IK//AC

9 tháng 8 2015

a) Áp dụng định lí Pi-Ta-go vào ΔABC :

      \(AC^2=BC^2-AB^2=10^2-6^2=64\)

\(AC=\sqrt{64}=8\left(cm\right)\).

b) ΔABK có BE vừa là đường cao vừa là trung tuyến nên tam giác ABk là tam giác cân.( nếu bạn chưa học tính chất này thì  xét 2 tam giác BEA và BEK cũng được, điều kiện xét đã có sẵn r).

 

c) Xét ΔABD và ΔKBD có:

      AB=AK(ΔABK cân tại B)

Góc ABD=KBD(gt)

     BD cạnh chung

Vậy ΔABD=ΔKBD(c.g.c)

=> Góc BAD=BKD=90o(hai góc tương ứng)

hay DK vuông góc với BC

d) Vì DK vuông góc với BC

        AH vuông góc với BC 

nên DK//AH => Góc DKA=HAK(so le trong) (1)

Vì ΔABD=KBD(cmt) => AD=KD(2 cạnh tương ứng) hay tam giác ADK cân tại K

=> Góc DKA=DAK hay DKA=CAK (2)

Từ (1) và (2) suy ra Góc HAK=CAK

Hay AK là tia phân giác của góc HAC.

 

a: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

góc HAD=góc KAD

=>ΔAHD=ΔAKD

b: AH=AK

DH=DK

=>AD là trung trực của HK

c: Gọi M là giao của DK với AH

Xét ΔAMC có

MK,CH là đường cao

MK cắt CH tại D

=>D là trực tâm

=>AD vuông góc MC

mà AD vuông góc CE

nên C,M,E thẳng hàng

=>AH,KD,CE đồng quy tại M

17 tháng 4 2019

bn tham khảo câu hỏi của bn Viêt Thanh Nguyễn Hoàng nhé, bài ấy mik cx làm đấy

1 tháng 5 2020

a) Có tam giác ABC vuông tại A

=>BC2=AC2+AB2 ( định lí Pitago)

=>BC2=82+62=100

=> BC=10 (cm)

b) Xét tam giác vuông ABE và tam giác vuông KBE có

Cạnh BE chung

Góc DBA= góc DBK hay góc EBA= góc EBK ( vì BD là tia phân giác của góc ABC)

=> tam giác ABE= tam giác KBE( cạnh góc vuông- góc nhọn)

=> BA=BK ( 2 cạnh tương ứng)

Vạy tam giác ABK cân tại B

c) Nối D với K, ta có tam giác DKE vuông tại E

Theo câu b, ta có tam giác ABE= tam giác KBE

=> KE=EA( 2 cạnh tương ứng) và góc EAB=góc EKB (1)

Xét tam giác vuông DEA và tam giác vuông DEK có

Cạnh DE chung

EA=KE

=> tam giác DEA= tam giác DEK ( 2 cạnh góc vuông)

=> Góc DAE=góc DKE (2)

Từ (1) và (2)  =>góc DKE+ góc EKB=góc DAE+ góc EAB= góc DAB=90 độ

=> Góc DKB= 90 độ

Vậy DK vuông góc với BC

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

9 tháng 7 2020

A B D E K C H I

a.Xét hai tam giác vuông ABE và tam giác vuông KBE có

                 góc ABE = góc KBE = 90độ

                  cạnh BE chung 

                  góc ABE = góc KBE [ gt ]

Do đó ; tam giác ABE = tam giác KBE [ g.c.g ]

\(\Rightarrow\) AB = KB [ cạnh tương ứng ]

Vậy tam giác ABK cân tại B

b.Xét tam giác  ABD và tam giác KBD có

               AB = KB [ vì tam giác ABE = tam giác KBE theo câu a ]

               góc ABD = góc KBD [ vì BD là tia phân giác góc B ]

             cạnh BD chung

Do đó ; tam giác ABD = tam giác KBD [ c.g.c ]

\(\Rightarrow\)góc BAD = góc BKD [ góc tương ứng ]

mà bài cho góc BAD = 90độ nên góc KBD = 90độ

Vậy DK vuông góc với BC

c.Vì DK vuông góc với BC và AH vuông góc với BC nên

DK // AH

Suy ra ; góc HAK = góc DKA [ ở vị trí so le trong ]   [ 1 ]

Mặt khác ; AD = DK [ vì tam giác ABD = tam giác KBD ]

\(\Rightarrow\)tam giác ADK là tam giác cân tại D nên 

góc DKA = góc DAK [ 2 ]

Từ [ 1 ] và [ 2 ] suy ra 

góc HAK = góc DAK 

Vậy AK là tia pg góc KAD hay AK là tia pg góc HAC