Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có tam giác ABC vuông tại A
=>\(BC^2=AC^2+AB^2\) ( định lí Pitago)
=>\(BC^2=8^2+6^2=100\)
=> BC=10 (cm)
b) Xét tam giác vuông ABE và tam giác vuông KBE có
Cạnh BE chung
Góc DBA= góc DBK hay góc EBA= góc EBK ( vì BD là tia phân giác của góc ABC)
=> tam giác ABE= tam giác KBE( cạnh góc vuông- góc nhọn)
=> BA=BK ( 2 cạnh tương ứng)
Vạy tam giác ABK cân tại B
c) Nối D với K, ta có tam giác DKE vuông tại E
Theo câu b, ta có tam giác ABE= tam giác KBE
=> KE=EA( 2 cạnh tương ứng) và góc EAB=góc EKB (1)
Xét tam giác vuông DEA và tam giác vuông DEK có
Cạnh DE chung
EA=KE
=> tam giác DEA= tam giác DEK ( 2 cạnh góc vuông)
=> Góc DAE=góc DKE (2)
Từ (1) và (2) =>góc DKE+ góc EKB=góc DAE+ góc EAB= góc DAB=90 độ
=> Góc DKB= 90 độ
Vậy DK vuông góc với BC
d)
Có \(DK⊥BC,AH⊥BC\) =>DK//AB
=> góc DKE= góc EAH (1)
Có tam giác DEA=tam giác DEK
=> góc DAE= góc DKE (2)
Từ (1) và (2) => góc EAH= góc DAE hay góc CAK= góc KAH
Vậy AK là phân giác của góc HAC
a) Xét tam giác vuông ABE và tam giác vuông KBE có
Cạnh BE chung
DBA=DBK hay EBA=EBA ( vì BD là phân giác của góc ABC)
=>\(\Delta ABE=\Delta KBE\) ( cạnh góc vuông- góc nhọn)
=>BA=BK
Vậy tam giác ABK cân tại B
b) Xét \(\Delta ABD\) và \(\Delta KBD\) có
AB=BK
ABD=KBD
Cạnh BD chung
=> \(\Delta ABD=\Delta KBD\left(c.g.c\right)\)
=> DKB=DAB=90 độ
Vậy \(DK⊥BC\)
c)d)
Xét \(\Delta ABI\) và \(\Delta KBI\) có
BA=BK
ABI=FBI
Cạnh BF chung
=> \(\Delta ABI=\Delta KBI\left(c.g.c\right)\)
=> IA=IK
Ta có DA=DK, IA=IK hay ID là đường trung trực của AK
=>AE=EK
Có \(DK⊥BC,AH⊥BC\) => DK//AH
=>DKE=EAI( 2 góc so le trong)
Xét tam giác vuông DKE và tam giác vuông EAI có
AE=EK
DKE=EAI
=> \(\Delta DKE=\Delta EAI\)(cạnh góc vuông- góc nhọn)
=>DK=AI
Mà DK=DA
=>AI=AD
Xét tam giác vuông DAE và tam giác vuông IAE có
DA=DI
Cạnh AE chung
=> \(\Delta DAE=\Delta IAE\)( cạnh huyền- cạnh góc vuông)
=>DAE=EAI hay góc CAK= góc KAH
Vậy AK là phân giác của HAC
Xét tam giác vuông IKE và tam giác vuông EAD có
AE=EK
KEI=AED( 2 góc đối đỉnh)
=>\(\Delta IKE=\Delta EAD\)( cạnh góc vuông- góc nhọn)
=>IKE=EAD
Mà IKE và EAD là 2 góc so le trong =>IK//AC
a) xét ABE vuông tại E và KBE vuông tại E
có góc ABE =KBE(gt)
BE chug
=> ABE=KBE ( ch -gn)
=> AB=KB( cạnh t/ư)
=> ABK cân tại B
b) xét ABD và KBD
có AB=KB
ABD=KBD
BD chung
=> ABD = KBD( cgc)
=> BAD = BKD
mà BAD = 90 độ
=> BKD =90 độ
hay DK vuông góc BC tại K
a, áp dụng định lí py-ta-go ta có:
\(BC^2\)=\(AB^2+AC^2\)
=> \(BC^2\)=36+64=100 cm
=>BC=10 cm
vậy BC=10 cm
b,xét 2 t.giác vuông ABE VÀ KBE có:
EB cạnh chung
\(\widehat{ABE}\)=\(\widehat{KBE}\)(gt)
=>t.giác ABE=t.giác KBE(cạnh góc vuông-góc nhọn)
=>AB=KB
=>t.giác ABK cân tại B
c, xét t.giác ABD và t.giác KBD có:
AB=KB(vì t.giác ABK cân)
\(\widehat{ABD}\)=\(\widehat{KBD}\)(gt)
DB cạnh chung
=>t.giác ABD=t.giác KBD(c.g.c)
=>\(\widehat{DAB}\)=\(\widehat{DKB}\)mà \(\widehat{DAB}\)=90 độ nên suy ra \(\widehat{DKB}\)=90 độ
=>DK\(\perp\)BC
a, Xét tam giác ABD và tam giác KBD có :
BD chung
góc ABD= góc DBK ( do BD là phân giác góc B )
Góc BAD=góc BKD=90 độ
=) Tam giác ABD = tam giác KBD ( cạnh huyền-góc nhọn )
b, Từ tam giác ABD=tam giác KBD ( theo phần a )
=) AD=DK( 2 cạnh tương ứng ) =) Tam giác ADK cân ở D =) Góc KAD=góc DKA (1)
Mà có tổng 2 góc trong cùng phía là góc AHK và góc DKH = 90+90=180 độ
=) AH//DK =) Góc AKD = góc HAK ( So le trong ) (2)
- Từ (1) và (2) =) Góc KAD= góc HAK =) AK là phân giác góc HAC
a) Xét 2 \(\Delta\)vuông ABD và KBD có:
\(\widehat{B_1}\)= \(\widehat{B_2}\)( do BD là tia phân giác \(\widehat{B}\))
BD cạnh chung
Vậy \(\Delta\)ABD = \(\Delta\)KBD ( ch-gn )
b) ....
mk chỉ bt làm câu A thôi, còn câu B mk ko bt. Thông cảm nha ^^
k nhá