Cho tam giác ABC vuông cân tại B. D thuộc AB, E là hình chiếu của D lên AC, F là giao của DE với BC. M,N,P,Q là trung điểm DA, DF, FC, CA. Chứng minh rằng MNPQ là hình vuông
Mn giải giúp e nha ^^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có
D là trung điểm của AB
DF//BC
Do đó: F là trung điểm của AC
Xét ΔABC có
D là trung điểm của AB
DE//AC
Do đó: E là trung điểm của BC
Xét ΔABC có
D là trung điểm của AB
E là trung điểm của BC
Do đó: DE là đường trung bình của ΔBCA
a) 1 XÉt tam giác ABC có:
D là trung điểm của AB (giả thiết) (1)
F là trung điểm của BC ( giả thiết) (2)
Từ (1) và (2) suy ra DF là đường trung bình
Suy ra DF song song với AC suy ra DF song song AE (vì AE \(\in\)AC)
Suy ra DF=\(\frac{1}{2}\)AC mà AE cũng = \(\frac{1}{2}\)AC suy ra DF = AE
Xét tứ giác ADEF có:
DF song song AE (3)
DF=AE (4)
Từ (3) và (4) suy ra tứ giác DAEF là HBH
a, Ta có: DE//BC \(\Rightarrow\widehat{DEB}+\widehat{EBF}=180\)
mà góc EBF =90 => góc DEB =90 (1)
Chứng minh tương tự với DF//AB
\(\Rightarrow\widehat{EDF}=90;\widehat{BFD}=90\) (2)
Từ (1) và (2) => tứ giác BEDF là hình chữ nhật
a) vì ED//BC và DF//AB
Mà \(\Delta ABC\)vuông tại B
Nên \(DE\perp AB\)và \(DF\perp BC\)
Xét tứ giác BEDF có:
\(\widehat{B}=\widehat{DEB}=\widehat{DFB}=90^0\)
Vậy tứ giác BEDF là hình chữ nhật