Tính hợp lí
1/200- 1/200.199-1/199.198-.....-1/3.2-1/2.1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{200}-\frac{1}{200.199}-\frac{1}{199.198}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{200}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{198.199}+\frac{1}{199.200}\right)\)
\(=\frac{1}{200}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{198}-\frac{1}{199}+\frac{1}{199}-\frac{1}{200}\right)\)
\(=\frac{1}{200}-\left(1+\frac{1}{200}\right)\)
\(=\left(\frac{1}{200}-\frac{1}{200}\right)-1\)
\(=0-1\)
\(=-1\)
link nè bạn
/hoi-dap/question/88514.html
hoặc bạn sang trang 3 của hỏi đáp toán hoc24 sẽ thấy nhé
Ta có : \(A=\dfrac{1}{199}-\dfrac{1}{199.198}-\dfrac{1}{198.197}-\dfrac{1}{197.196}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(=\dfrac{1}{199}-\left(\dfrac{1}{199.198}+\dfrac{1}{198.197}+\dfrac{1}{197.196}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
\(=\dfrac{1}{199}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{196.197}+\dfrac{1}{197.198}+\dfrac{1}{198.199}\right)\)
\(=\dfrac{1}{199}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...-\dfrac{1}{198}+\dfrac{1}{198}-\dfrac{1}{199}\right)\)
\(=\dfrac{1}{199}-\left(1-\dfrac{1}{199}\right)\)
\(=\dfrac{1}{199}-\dfrac{198}{199}=\dfrac{-197}{199}\)
~ Học tốt ~
\(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-\frac{1}{97.96}+......+\frac{1}{2.1}\)
= \(\frac{1}{99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}\right)\)
= \(\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{98}-\frac{1}{99}\right)\)
= \(\frac{1}{99}-\left(1-\frac{1}{99}\right)\)
= \(\frac{1}{99}-\frac{98}{99}\)
= \(\frac{-97}{99}\)
\(=\frac{1}{2014}-\frac{2014-2013}{2014.2013}-\frac{2013-2012}{2013.2012}-...-\frac{3-2}{3.2}-\frac{2-1}{2.1}\)
\(=\frac{1}{2014}-\left(\frac{2014}{2014.2013}-\frac{2013}{2014.2013}\right)-...-\left(\frac{3}{3.2}-\frac{2}{3.2}\right)-\left(\frac{2}{2.1}-\frac{1}{2.1}\right)\)
\(=\frac{1}{2014}+\left(\frac{1}{2014}-\frac{1}{2013}\right)+...+\left(\frac{1}{3}-\frac{1}{2}\right)+\left(\frac{1}{2}-1\right)\)
\(=\frac{1}{1007}-1\)
\(=\frac{-1006}{1007}\)
Câu tl của bn lộn ở bước thứ 3 đấy đảo ngược 1/2013 và 1/2014 lại
\(\frac{1}{2014}-\frac{1}{2014.2013}-\frac{1}{2013.2012}-...-\frac{1}{3.2}-\frac{1}{2.1}.\)
\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2012.2013}+\frac{1}{2013.2014}\right)+\frac{1}{2014}\)
\(=\frac{1}{2014}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)
\(=\frac{1}{2014}-1+\frac{1}{2014}=\frac{1}{1007}-1=\frac{-1006}{1007}\)
....