Tìm số có 4 chữ số khác nhau, biết rằng nếu viết thêm chữ số 0 vào giữa c/s HN và HT ta có số mới gấp 9 lần số cũ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số có 3 chữ số khác nhau là abcd ( a khác 0 ; a,b,c,d là chữ số )
theo đề bài ta có :
a0bcd = abcd x 9
a x 10000 + bcd = 9 x ( a x 1000 + bcd )
a x 10000 + bcd = a x 9000 + 9 x bcd
a x 1000 = 8 x bcd
a x 125 = bcd
do a là chữ số , bcd là số có 3 chữ số nên a có thể bằng 1,2,3 ( a không thể bằng 4 vì nếu a bằng thì bcd bằng 125 x 4 =1000 , loại vì bcd là số có 3 chữ số ) => a = 1,2,3
ta có các trường hợp sau :
a = 1 => bcd = 1 x 125 = 125 => abcd = 1125
a = 2 => bcd = 2 x 125 = 250 => abcd = 2250
a = 3 => bcd = 3 x 125 = 375 => abcd = 3375
vậy số có 4 chữ số cần tìm là : 1125 ; 2250 ; 3375
Gọi số cần tìm là abcd.
Theo đề bài ta có: \(\overline{a0bcd}=9\overline{abcd}\Leftrightarrow10.000a+\overline{bcd}=9\cdot\left(1000a+\overline{bcd}\right)\)
\(\Leftrightarrow1000a=8\cdot\overline{bcd}\Leftrightarrow125\cdot a=\overline{bcd}\)
- a = 1 => bcd = 125 => abcd = 1125
- a = 2 => bcd = 250 => abcd = 2250
- a = 3 => bcd = 375 => abcd = 3375
- a = 4 => bcd = 500 => abcd = 4500
- a = 5 => bcd = 625 => abcd = 5625
- a = 6 => bcd = 750 => abcd = 6750
- a = 7 => bcd = 875 => abcd = 7875
- a>=8 => bcd >=1000 loại.
Gọi số đó là ab.
Vậy số mới là a0b
Ta có:
a0b=9.ab
a.100+b=9.(a.10+b)
a.100+b=90.a+b.9
a.10=b.8
=>a=4;b=5(Vì a.10 phải bé hơn hoặc bằng 72 để b là chữ số)
Số cần tìm là 45
Gọi số có hai chữ số cần tìm là ab [sao cho a khác 0 ; a, b <10]
Nếu viết thêm 1 chữ số 0 vào giữa hai chữ số đó ta được số mới là a0b
Theo bài ra ta có:
aob = ab x 9
a x 100 + b = [a x 10 + b ] x 9
a x 100 + b = a x 10 x 9 + b x 9
a x 100 + b = a x 90 + b x 9
a x10 =b x 8 [ vì cùng bớt ở cả hai vế đi a x 90 + b]
a x 5 =b x 4 (1) [ vì cùng chia cả hai vế cho 2]
Vì a x 5 chia hết cho 5
Suy ra b x 4 cũng chia hết cho 5
Mà 4 và 5 không cùng chia hết cho số nào khác 1 nên suy ra b chia hết cho 5
Và b < 10 suy ra b = 5 hoặc 0 (2)
Nếu b = 0 thì b x 4 = 0 x 4 =0 và bằng a x 5 là vô lý [vì a khác o ] (3)
Từ (2) và (3) suy ra b = 5
Thay b = 5 vào (1) ta có:
a x 5 = b x 4
a x 5 = 5 x 4
Suy ra a = 4 nên số cần tìm là 45
Vậy số cần tìm có hai chữ số thỏa mãn điều kiện đề bài là 45
Vậy số
#)Giải :
Gọi số cần phải tìm là abcd
Ta có : abcd x 9 = a0bcd
=> ( a x 1000 + b x 100 + c x 10 + d ) x 9 = a x 10000 + b x 100 + c x 10 + d
=> a x 9000 + b x 900 + c x 90 + d x 9 = a x 10000 + b x 100 + c x 10 + d
=> a x 1000 = b x 800 + c x 80 + d x 8
#) Rùi chứ bn, tự tìm hiểu thêm nhé :D
#~Will~be~Pens~#
Gọi số cần tìm : abcd thêm 0 vào giữa số hàng nghìn và hàng trăm ta được : a0bcd, theo đề bài ta có :
a0bcd = abcd . 9 \(\rightarrow\)a0bcd = abcd ( 10 - 1 ) \(\rightarrow\)a0bcd = abcd . 10 - abcd \(\rightarrow\)a0bcd + abcd = abcd0
Vì b + d có tận cùng bằng 0 \(\rightarrow\)d = 0 hoặc d = 5.
* Nếu d = 0 \(\rightarrow\)c\(\ne\)0 mà c + c có tận cùng bằng 0 nên c = 5.
Khi đó : b + b + 1 có tận cùng bằng 5 nên b = 2 hoặc b = 7.
Nếu b = 2 thì 0 + a có tận cùng bằng 2 thì a = 2 : loại vì a\(\ne\)b.
Nếu b = 7 thì 0 + a + 1 có tận cùng bằng 7 nên a = 6 thì 6750 x 9 = 60 750 đúng với đề bài.
* d = 5
Ta có : c + c + 1 = 0 có tận cùng là 5 nên c = 2 hoặc 7.
Nếu c = 2 thì b + b = 2 nên b = 1, do đó 0 + a có tận cùng bằng 1 nên a = 1 : loại vì a\(\ne\)b.
Nếu c = 7 thì b + b + 1 có tận cùng là 7 nên b = 3 hoặc 8. Với b = 3 thì 0 + a = 3 nên a = 3 : loại vì a\(\ne\)c.
Vậy số cần tìm là 6750.
#ĐinhBa