4x : 101 = 28
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(58+7x=100\)
\(=>7x=100-58\)
\(=>7x=42\)
\(=>x=42:7\)
\(=>x=6\)
b) \(3x-7=28\)
\(=>3x=28+7\)
\(=>3x=35\)
\(=>x=35:3\)
\(=>x=\dfrac{35}{3}\)
c) \(x-56:4=16\)
\(=>x-14=16\)
\(=>x=16+14\)
\(=>x=30\)
d) \(101+\left(36-4x\right)=105\)
\(=>36-4x=105-101\)
\(=>36-4x=4\)
\(=>4x=36-4\)
\(=>4x=32\)
\(=>x=32:4\)
\(=>x=8\)
e) \(\left(x-12\right):12=12\)
\(=>x-12=12.12\)
\(=>x-12=144\)
\(=>x=144-12\)
\(=>x=132\)
f) \(\left(3x-2^4\right).7^3=2.7^4\)
\(=>3x-2^4=2.7^4:7^3\)
\(=>3x-16=2.7=14\)
\(=>3x=14+16\)
\(=>3x=30\)
\(=>x=30:3\)
\(=>x=10\)
i) \(\left(10+2x\right).4^{2011}=4^{2013}\)
\(=>10+2x=4^{2013}:4^{2011}\)
\(=>10+2x=4^2=16\)
\(=>2x=16-10\)
\(=>2x=6\)
\(=>x=6:2\)
\(=>x=3\)
\(#WendyDang\)
a: =>7x=42
hay x=6
b: =>5x=35
hay x=7
c: =>x-14=16
hay x=30
d: =>36-4x=4
=>4x=32
hay x=8
e: =>x-12=144
hay x=156
f: =>3x-16=14
hay x=10
g: =>x+33=45
hay x=12
h: =>(x+9):2=39
=>x+9=78
hay x=69
a: =>7x=42
hay x=6
b: =>5x=35
hay x=7
c: =>x-14=16
hay x=30
d: =>36-4x=4
=>4x=32
Câu này bạn đã đăng rồi và có người trả lời rồi nhé, abnj xem lại câu hỏi nha :
Câu hỏi của ngố ngố - Toán lớp 8 | Học trực tuyến
Bài 1:
a) \(A=x^2-20x+101\)
\(=x^2-2\cdot x\cdot10+10^2-100+101\)
\(=\left(x-10\right)^2+1\ge1\)
Dấu "=" xảy ra khi \(x=10\)
Vậy \(MIN_A=1\) khi \(x=10\)
b) \(B=4x^2+4x+2\)
\(=\left(2x^2\right)^2+2\cdot x\cdot2+2^2-4+2\)
\(=\left(2x+2\right)^2-2\ge-2\)
Dấu "=" xảy ra khi \(x=-1\)
Vậy \(MIN_B=-2\) khi \(x=-1\)
c) tự làm :)))
a) 6 841 603 = 6 000 000 + 800 000 + 40 000 + 1 000 + 600 + 3
b) 28 176 901 = 20 000 000 + 8 000 000 + 100 000 + 70 000 + 6 000 + 900 + 1
c) 101 010 101 = 100 000 000 + 1 000 000 + 10 000 + 100 + 1
a, +/ Có \(A=4x-x^2+3=4x-x^2+4-1\)
\(=-\left(-2.2x+x^2+2^2\right)+1=1-\left(x-2\right)^2\)
do \(\left(x-2\right)^2\ge0\forall x\in R\Rightarrow A\le1\)
\(\Rightarrow maxA=1\)tại \(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)
Vậy max A=1 tại x=2
+/ Có \(B=x-x^2=2.\frac{1}{2}x-x^2-\frac{1}{4}+\frac{1}{4}\)
\(=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{4}=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\)
\(\Rightarrow A\le\frac{1}{4}\)do\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow maxB=\frac{1}{4}\)tại \(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
Vậy max B =\(\frac{1}{4}\)tại x=\(\frac{1}{2}\)
\(A=x^2-20x+101\)
\(A=x^2-2\cdot x\cdot10+100+1\)
\(A=\left(x-10\right)^2+1\ge1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=10\)
___
\(B=4a^2+4a+2\)
\(B=4a^2+4a+1+1\)
\(B=\left(2a+1\right)^2+1\ge1\forall a\)
Dấu "=" xảy ra \(\Leftrightarrow a=\frac{-1}{2}\)
___
\(C=x^2-4xy+5y^2+10x-22y+28\)
\(C=x^2-4xy+4y^2+y^2+10x-22y+28\)
\(C=\left(x-2y\right)^2+2\cdot\left(x-2y\right)\cdot5+25+y^2-2y+1+2\)
\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
___
\(D=4x-x^2+3\)
\(D=-\left(x^2-4x-3\right)\)
\(D=-\left(x^2-4x+4-7\right)\)
\(D=-\left[\left(x-2\right)^2-7\right]\)
\(D=7-\left(x-2\right)^2\le7\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=2\)
___
\(E=x-x^2\)
\(E=-\left(x^2-x\right)\)
\(E=-\left(x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)\)
\(E=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)
\(E=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)
a, \(A=x^2-20x+101=x^2-2.x.10+10^2+1\)
\(=\left(x-10\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-10\right)^2=0\)
\(\Leftrightarrow x-10=0\)
\(\Leftrightarrow x=10\)
Vậy : \(A_{min}=1\Leftrightarrow x=10\)
b) \(B=4a^2+4a+2=\left(2a\right)^2+2.2a.1+1^2+1\)
\(=\left(2a+1\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2a+1\right)^2=0\)
\(\Leftrightarrow2a+1=0\)
\(\Leftrightarrow2a=-1\)
\(\Leftrightarrow a=-\frac{1}{2}\)
Vậy : \(B_{min}=1\Leftrightarrow x=-\frac{1}{2}\)
4x / 101 = 28
4x = 28 x101
4x =2828
x = 2828 / 4
x =707
nhớ k cho mình nha
4x = 28x101
4x = 21008
x = 21008 : 4
x = 5252