K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2016

ta áp dụng cô-si la ra 
a2+b2+c2 ≥ ab+ac+bc 
̣̣(a - b)2 ≥ 0 => a2 + b2 ≥ 2ab (1) 
(b - c)2 ≥ 0 => b2 + c2 ≥ 2bc (2) 
(a - c)2 ≥ 0 => a2 + c2 ≥ 2ac (3) 
cộng (1) (2) (3) theo vế: 
2(a2 + b2 + c2) ≥ 2(ab+ac+bc) 
=> a2 + b2 + c2 ≥ ab+ac+bc 
dấu = khi : a = b = c

10 tháng 9 2016

Ta có : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0..\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0..\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)\ge\left(ab+bc+ca\right)\)

25 tháng 7 2016

Ta sẽ chứng minh bằng biến đổi tương đương như sau : 

Ta có ; \(a^2+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

Vì bđt cuối luôn đúng nên bđt ban đầu được cm.

19 tháng 6 2018

MK CHỊU !

20 tháng 7 2018

a=b+c => a-b-c=0 mà số đã bằng 0 rồi thì sao chia cả 2 vế cho 0 được nên sai 

10 tháng 8 2016

a)a2+b2+c2+3=2(a+b+c)

=>a2+b2+c2+1+1+1-2a-2b-2c=0

=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0

=>(a-1)2+(b-1)2+(c-1)2=0

=>a-1=b-1=c-1=0 <=>a=b=c=1 

-->Đpcm

b)(a+b+c)2=3(ab+ac+bc)

=>a2+b2+c2+2ab+2ac+2bc -3ab-3ac-3bc=0 

=>a2+b2+c2-ab-ac-bc=0

=>2a2+2b2+2c2-2ab-2ac-2bc=0 

=>(a2- 2ab+b2)+(b2-2bc+c2) + (c2-2ca+a2) = 0

=>(a-b)2+(b-c)2+(c-a)2=0 

Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0

=>a-b hoặc b=c hoặc a=c

=>a=b=c 

-->Đpcm

c)a2+b2+c2=ab+bc+ca

=>2(a2+b2+c2)=2(ab+bc+ca)

=>2a2+2b2+c2=2ab+2bc+2ca

=>2a2+2b2+c2-2ab-2bc-2ca=0

=>a2+a2+b2+b2+c2+c2-2ab-2bc-2ca=0

=>(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ca+c2)=0

=>(a-b)2+(b-c)2+(a-c)2=0

Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0

=>a-b hoặc b=c hoặc a=c

=>a=b=c 

-->Đpcm

30 tháng 3 2015

nhân 2 vào 2 vế rồi chuyển vế sau đó khai triển ta được (a-b)(b-c)(c-a) >=0

luôn đúng với mọi a;b;c

suy ra ĐPCM

30 tháng 3 2015

ta có     \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2\ge2ab+2bc+2ac\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(\(\Rightarrow\)a=b=c)

<=> \(a^2+b^2+c^2\ge ab+bc+ca\)

 

5 tháng 1 2021

Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3

Chứng minh rằng với mọi k > 0 ta luôn có....

5 tháng 1 2021

.

Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3

Chứng minh rằng với mọi k > 0 ta luôn có

a: \(BC=\sqrt{AB^2+AC^2}=\sqrt{19}\left(cm\right)\)

2 tháng 4 2017

Lại copy!!!

Giải:

Áp dụng BĐT Bunhiacopski

Xét cặp số \(\left(1,1,1\right)\)\(\left(a,b,c\right)\) ta có:

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(1.a+1.b+1.c\right)^2\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ac\right)\)

\(\Rightarrow a^2+b^2+c^2\ge ab+ac+bc\) (Đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

2 tháng 4 2017


Chúng ta có thể dễ dàng bất đức thức này bằng vài bước suy luận cơ bản như sau:

Chứng minh bất đẳng thức: a2 + b2 + c2 ≥ ab + bc + ca

Điều này luôn đúng nên ta có điều phải chứng minh. Đẳng thức xảy ra khi a = b = c.