K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2016

ta áp dụng cô-si la ra 
a2+b2+c2 ≥ ab+ac+bc 
̣̣(a - b)2 ≥ 0 => a2 + b2 ≥ 2ab (1) 
(b - c)2 ≥ 0 => b2 + c2 ≥ 2bc (2) 
(a - c)2 ≥ 0 => a2 + c2 ≥ 2ac (3) 
cộng (1) (2) (3) theo vế: 
2(a2 + b2 + c2) ≥ 2(ab+ac+bc) 
=> a2 + b2 + c2 ≥ ab+ac+bc 
dấu = khi : a = b = c

10 tháng 9 2016

Ta có : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0..\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0..\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)\ge\left(ab+bc+ca\right)\)

25 tháng 7 2016

Ta sẽ chứng minh bằng biến đổi tương đương như sau : 

Ta có ; \(a^2+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

Vì bđt cuối luôn đúng nên bđt ban đầu được cm.

5 tháng 1 2021

Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3

Chứng minh rằng với mọi k > 0 ta luôn có....

5 tháng 1 2021

.

Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3

Chứng minh rằng với mọi k > 0 ta luôn có

11 tháng 9 2016

Vì vai trò a,b,c như nhau nên ta giả sử

\(a\ge b\ge c>0\)

Ta có: \(2b\left(a+c\right)^2-\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+c\right)\left(a-b\right)\left(b-c\right)\ge0\)

\(\Rightarrow2b\left(a+c\right)^2\ge\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Khi đó:

\(\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)\(\ge\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{4ac}{\left(a+c\right)^2}\) (1)

Mà \(\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{4ac}{\left(a+c\right)^2}-2=\frac{\left(a^2+c^2-ab-bc\right)^2}{\left(a+c\right)^2\left(ab+bc+ca\right)}\ge0\) (2)

Từ (1) và (2) =>Đpcm

 

11 tháng 9 2016

Ta dễ dàng chứng minh được  \(a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow\frac{a^2+b^2+c^2}{ab+bc+ac}\ge1\Rightarrow\frac{a^2+b^2+c^2}{ab+bc+ac}\ge\frac{a^2+b^2+c^2+a^2}{ab+bc+ac+a^2}=\frac{2a^2+b^2+c^2}{\left(a+c\right)\left(a+b\right)}\)

Suy ra cần chứng minh \(\frac{2a^2+b^2+c^2}{\left(a+b\right)\left(a+c\right)}+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge2\)

Điều này tương đương với \(\left(b+c\right)\left(2a^2+b^2+c^2\right)+8abc\ge2\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Leftrightarrow2a^2b+2a^2c+b^3+b^2c+c^2b+c^3+8abc\ge2\left(2abc+a^2b+ac^2+a^2c+b^2c+b^2a+bc^2\right)\)

\(\Leftrightarrow\left(b^2-2bc+c^2\right)\left(b+c-2a\right)\ge0\Leftrightarrow\left(b-c\right)^2\left(b+c-2a\right)\ge0\) (luôn đúng)

Vậy bđt ban đầu được chứng minh

 

28 tháng 3 2021

xí câu 1:))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)

Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )

Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=2 => x=y=2

29 tháng 8 2015

Kẻ CE vuông góc với AB, ta có ngay tam giác ACE vuông có một góc nhọn 60. Suy ra \(AE=\frac{1}{2}AC=\frac{b}{2},CE=\frac{\sqrt{3}}{2}b\). Xét tam giác vuông EBC có '\(EB=c+\frac{b}{2},EC=\frac{\sqrt{3}}{2}b\to a^2=BC^2=BE^2+CE^2=\left(c+\frac{b}{2}\right)^2+\left(\frac{\sqrt{3}}{2}b\right)^2=c^2+bc+b^2\)

đáp án 

=c2 + bc + b2

hok tót

16 tháng 8 2021

Hình tự vẽ nha

Kẻ phân giác \(AD,BK\perp AD\)
\(\sin\dfrac{A}{2}=\sin BAD\)
xét \(\Delta AKB\) vuông tại K,có: 
\(\sin BAD=\dfrac{BK}{AB}\left(1\right)\)
Xét \(\Delta BKD\) vuông tại K,có :
\(BK\le BD\) thay vào (1): 
\(\sin BAD\le\dfrac{BD}{AB}\left(2\right)\) 
lại có:\(\dfrac{BD}{CD}=\dfrac{AB}{AC}\)
\(\Rightarrow\dfrac{BD}{BD+CD}=\dfrac{AB}{AB+AC}\)
\(\Rightarrow\dfrac{BD}{BC}=\dfrac{AB}{AB+AC}\)
\(\Rightarrow BD=\dfrac{AB\cdot AC}{AB+AC}\) thay vào (2) 
\(\sin BAD\le\dfrac{\dfrac{AB\cdot AC}{AB+AC}}{AB}=\dfrac{BC}{AB+AC}\)
\(\RightarrowĐPCM\)

Tick plz

25 tháng 1 2020

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

25 tháng 1 2020

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)