chứng minh rằng trong 6 số tự nhiên bất kì luôn tìm đc hai số có hiệu chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một số bất kì khi chia cho 5 có thể có 5 số dư : 0;1;2;3;4
6 số bất kì => luôn tồn tại ít nhất 2 số có cùng số dư
Giả sử a =5q+k và b =5p +k ;( 0</ k </4 )
=> a -b = 5q +k - 5p -k = 5(q-p) chia hết cho 5
Theo đề bài các số dư ={1;3;5;7}
=> có ít nhất 2 số khi chia cho 15 có cùng số dư ta gọi 2 số đó là là a và b
\(\Rightarrow a\equiv b\) (mod 15) \(\Rightarrow a-b⋮15\)