rút gọn
1+5+5^2+...........+5^100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+5+5^2+5^3+...+5^{100}\)
\(5A=5+5^2+5^3+...+5^{100}+5^{101}\)
\(5A-A=5+5^2+5^3+...+5^{100}+5^{101}-\left(1+5+5^2+5^3+...+5^{100}\right)\)
\(4A=5^{101}-1\)
\(A=\frac{5^{101}-1}{4}\)
A = 1+5+52+53+...+5100
5A = 5+52+53+54+....+5101
4A = 5A - A = 5101 - 1
=> A = \(\frac{5^{101}-1}{4}\)
A=1+2^2+...+2^100
2A=2+2^2+2^3+...+2^101
2A=2^101-1
A=(2^101-1):2
\(B=5^1+5^2+...+5^{199}\)
\(\Rightarrow5B=5^2+5^3+...+5^{200}\)
\(\Rightarrow5B-B=\left(5^2+5^3+...+5^{200}\right)-\left(5^1+5^2+...+5^{199}\right)\)
\(\Rightarrow4B=5^{200}-5\)
\(\Rightarrow B=\frac{5^{200}-5}{4}\)
A=1+5+52+...+5100
=>5A=5+52+53+...+5101
_
A=1+5+52+....5100
___________________________________
4A=5101-1
=>A=5101-1/4
5A=5+5^2+5^3+.....+5^101
5A-A=5^101-1
A=\(\frac{5^{101}-1}{4}\)
đặt A= 1+5+5^2+...+5^100
5A=5x(1+5+5^2+...+5^100)
5A= 5+5^2+...+5^100+5^101
5A-A= (5+5^2+...+5^100+5^101)-( 1+5+5^2+...+5^100)
4A=5^101-1
A=\(\frac{5^{101-1}}{4}\)
Ta có:
\(K=1+5^2+5^3+...+5^{100}\)
\(\Rightarrow5K=5+5^3+5^4+...+5^{101}\)
\(\Rightarrow5K-K=5+5^3+5^4+...+5^{101}-1-5^2-5^3-...-5^{100}\)
\(\Rightarrow4K=5^{101}-4\)
\(\Rightarrow K=\frac{5^{101}-4}{4}\)
\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)
\(2A=2+2^2+2^3+...+2^{51}\)
\(2A-A=A=2^{51}-2^0\)
\(B=5+5^2+5^3+...+5^{99}+5^{100}\)
\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)
\(5B-B=4B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)
\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)
\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)
\(3C+C=4C=3^{2011}+3\)
\(C=\frac{3^{2011}+3}{4}\)
\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)
\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)
\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)
\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)
\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)
A=20+21+22+23+...++23+...+250250
2�=2+22+23+...+2512A=2+22+23+...+251
2�−�=�=251−202A−A=A=251−20
�=5+52+53+...+599+5100B=5+52+53+...+599+5100
5�=52+53+54+...+5100+51015B=52+53+54+...+5100+5101
5�−�=4�=5101−55B−B=4B=5101−5
�=5101−54B=45101−5
�=3−32+33−34+...+C=3−32+33−34+...+32007−32008+32009−3201032007−32008+32009−32010
3�=32−33+34−35+...−32008+32009−32010+320113C=32−33+34−35+...−32008+32009−32010+32011
3�+�=4�=32011+33C+C=4C=32011+3
�=32011+34C=432011+3
�100=5+5×9+5×92+5×93+...+5×999S100=5+5×9+5×92+5×93+...+5×999
�100=5×(1+9+92+93+...+999)S100=5×(1+9+92+93+...+999)
9�100=5×(9+92+93+...+999+9100)9S100=5×(9+92+93+...+999+9100)
9�100−�100=8�100=5×(9100−1)9S100−S100=8S100=5×(9100−1)
�100=5×(9100−1)8S100=85×(9100−1)
\(A=1+2+2^2+...+2^{51}\)
\(2A=2+2^2+2^3+...+2^{52}\)
\(2A-A=\left(2+2^2+2^3+...+2^{52}\right)-\left(1+2+2^2+...+2^{51}\right)\)
\(A=2^{52}-1\)
\(B=5+5^2+5^3+...+5^{100}\)
\(5B=5^2+5^3+5^4+...+5^{101}\)
\(5B-B=\left(5^2+5^3+5^4+...+5^{101}\right)-\left(5+5^2+5^3+...+5^{100}\right)\)
\(4B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)
\(1+5+5^2+...5^{100.}\)
\(=1+5+5^{2+...+100}\)
\(=1+5+5^{99}\)
\(=1+5^1+5^{99}\)
\(=1+5^{1+99}\)
\(=1+5^{100}\)
\(=1+500\)
\(=501\)
Vậy, 5A = 5¹ + 5² + 5³ +... + 5⁵⁰ + 5⁵¹.
5A - A = 4A = (5¹ + 5² + 5³ +... + 5⁵⁰) + 5⁵¹ - 5⁰ + (5¹ + 5² + 5³ +... + 5⁴⁹ + 5⁵⁰) = 5⁵¹ - 1.
Tức, A = \(\frac{\left(5^{51}-1\right)}{4}\)