giải pt :
(x2-3x+3)(x2-2x+3)=2x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>7-x=0
hay x=7
b: \(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\left(x+5\right)\left(3x-8\right)=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2};-5;\dfrac{8}{3}\right\}\)
a: =>-x+7=0
hay x=7
b: \(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\left(x+5\right)\left(3x-8\right)=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2};-5;\dfrac{8}{3}\right\}\)
a: \(\Delta=2^2-4\cdot1\cdot\left(-30\right)=124\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-2-2\sqrt{31}}{2}=-1-\sqrt{31}\\x_2=-1+\sqrt{31}\end{matrix}\right.\)
b: \(2x^2-3x-5=0\)
\(\Leftrightarrow2x^2-5x+2x-5=0\)
=>(2x-5)(x+1)=0
=>x=5/2 hoặc x=-1
a.\(x^2+2x-30=0\)
\(\Delta=2^2-4.\left(-30\right)=4+120=124>0\)
=> pt có 2 nghiệm
\(\left\{{}\begin{matrix}x=\dfrac{-2+\sqrt{124}}{2}=\dfrac{-2+2\sqrt{31}}{2}=-1+\sqrt{31}\\x=\dfrac{-2-\sqrt{124}}{2}=-1-\sqrt{31}\end{matrix}\right.\)
b.\(2x^2-3x-5=0\)
Ta có: a-b+c=0
\(\Rightarrow\left\{{}\begin{matrix}x=-1\\x=\dfrac{5}{2}\end{matrix}\right.\)( vi-ét )
Ta có: \(\left(x^2-3x+3\right)\left(x^2-2x+3\right)=2x^2\)
\(\Leftrightarrow\left(x^2+3\right)^2-5x\left(x^2+3\right)+6x^2-2x^2=0\)
\(\Leftrightarrow\left(x^2+3\right)^2-5x\left(x^2+3\right)+4x^2=0\)
\(\Leftrightarrow\left(x^2+3\right)^2-x\left(x^2+3\right)-4x\left(x^2+3\right)+4x^2=0\)
\(\Leftrightarrow\left(x^2+3\right)\left(x^2-x+3\right)-4x\left(x^2-x+3\right)=0\)
\(\Leftrightarrow\left(x^2-x+3\right)\left(x^2-4x+3\right)=0\)
mà \(x^2-x+3>0\forall x\)
nên \(x^2-4x+3=0\)
\(\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy: S={1;3}
Nhận thấy \(x=0\) ko phải nghiệm, pt tương đương:
\(\left(\dfrac{x^2-3x+3}{x}\right)\left(\dfrac{x^2-2x+3}{x}\right)=2\)
\(\Leftrightarrow\left(x+\dfrac{3}{x}-3\right)\left(x+\dfrac{3}{x}-2\right)-2=0\)
Đặt \(x+\dfrac{3}{x}-3=t\)
\(\Rightarrow t\left(t+1\right)-2=0\Leftrightarrow t^2+t-2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+\dfrac{3}{x}-3=1\\x^2+\dfrac{3}{x}-3=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+3=0\\x^2-x+3=0\left(vô-nghiệm\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
1) Ta có: \(x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
Vậy: S={2}
\(\Leftrightarrow\left(x^2-3x+3\right)\left(x^2-3x+3+x\right)-2x^2=0\)
\(\Leftrightarrow\left(x^2-3x+3\right)^2+x\left(x^2-3x+3\right)-2x^2=0\)
\(\Leftrightarrow\left(x^2-3x+3\right)^2-x\left(x^2-3x+3\right)+2x\left(x^2-3x+3\right)-2x^2=0\)
\(\Leftrightarrow\left(x^2-3x+3\right)\left(x^2-3x+3-x\right)+2x\left(x^2-3x+3-x\right)=0\)
\(\Leftrightarrow\left(x^2-4x+3\right)\left(x^2-x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+3=0\\x^2-x+3=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)