(12234907457682678495482625924824646785495636394745824+32847165734851457164):156565426545426:213743677583945634648723415623572356237+5423058259685792362627=?????????
Giải hộ mình bài này
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5 hình 1: (tự vẽ hình nhé bạn)
a) Xét ΔABD và ΔACB ta có:
\(\widehat{BAD}\)= \(\widehat{BAC}\) (góc chung)
\(\widehat{ABD}\)= \(\widehat{ACB}\) (gt)
=> ΔABD ~ ΔACB (g-g)
=> \(\dfrac{AB}{AC}\) = \(\dfrac{BD}{CB}\) = \(\dfrac{AD}{AB}\) (tsđd)
b) Ta có: \(\dfrac{AB}{AC}\) = \(\dfrac{AD}{AB}\) (cm a)
=> \(AB^2\) = AD.AC
=> \(2^2\) = AD.4
=> AD = 1 (cm)
Ta có: AC = AD + DC (D thuộc AC)
=> 4 = 1 + DC
=> DC = 3 (cm)
c) Xét ΔABH và ΔADE ta có:
\(\widehat{AHB}\) = \(\widehat{AED}\) (=\(90^0\))
\(\widehat{ADB}\) = \(\widehat{ABH}\) (ΔABD ~ ΔACB)
=> ΔABH ~ ΔADE
=> \(\dfrac{AB}{AD}\) = \(\dfrac{AH}{AE}\) = \(\dfrac{BH}{DE}\) (tsdd)
Ta có: \(\dfrac{S_{ABH}}{S_{ADE}}\) = \(\left(\dfrac{AB}{AD}\right)^2\)= \(\left(\dfrac{2}{1}\right)^2\)= 4
=> đpcm
Tiếp bài 5 hình 2 (tự vẽ hình)
a) Xét ΔABC vuông tại A ta có:
\(BC^2\) = \(AB^2\) + \(AC^2\)
\(BC^2\) = \(21^2\) + \(28^2\)
BC = 35 (cm)
b) Xét ΔABC và ΔHBA ta có:
\(\widehat{BAC}\) = \(\widehat{AHB}\) ( =\(90^0\))
\(\widehat{ABC}\) = \(\widehat{ABH}\) (góc chung)
=> ΔABC ~ ΔHBA (g-g)
=> \(\dfrac{AB}{BH}\) = \(\dfrac{BC}{AB}\) (tsdd)
=> \(AB^2\) = BH.BC
=> \(21^2\) = 35.BH
=> BH = 12,6 (cm)
c) Xét ΔABC ta có:
BD là đường p/g (gt)
=> \(\dfrac{AD}{DC}\) = \(\dfrac{AB}{BC}\) (t/c đường p/g)
Xét ΔABH ta có:
BE là đường p/g (gt)
=> \(\dfrac{HE}{AE}\) = \(\dfrac{BH}{AB}\) (t/c đường p/g)
Mà: \(\dfrac{AB}{BC}\) = \(\dfrac{BH}{AB}\) (cm b)
=> đpcm
d) Ta có: \(\left\{{}\begin{matrix}\widehat{HBE}+\widehat{BEH}=90^0\\\widehat{ABD}+\widehat{ADB=90^0}\\\widehat{HBE}=\widehat{ABD}\end{matrix}\right.\)
=> \(\widehat{BEH}=\widehat{ADB}\)
Mà \(\widehat{BEH}=\widehat{AED}\) (2 góc dd)
Nên \(\widehat{ADB}=\widehat{AED}\)
=> đpcm
e: \(=\dfrac{-3}{4}+\dfrac{5}{7}=\dfrac{-21+20}{28}=\dfrac{-1}{28}\)
a ) \(\dfrac{6}{13}\) + \(\dfrac{-14}{39}\)
= \(\dfrac{6.3}{13.3}\) + \(\dfrac{-14}{39}\)
= \(\dfrac{18}{39}\) - \(\dfrac{14}{39}\)
= \(\dfrac{4}{39}\)
{ các ý còn lại tương tự }
Vượn cổ | Người tối cổ | Người tinh khôn | |
Thời gian xuất hiện | khoảng 6 triệu năm trước | 4 triệu nằm trước đây | khoảng 4 vạn nằm trước đây |
Cấu tạo cơ thể
| - Có thể đi, đứng bằng 2 chân | - Đi, đứng bằng hai chân. - Trán thấp và bợt ra sau, u mày nổi cao, hộp sọ đã lớn hơn và hình thành trung tâm phát tiếng nói trong não. | - Như con người ngày nay |
Địa điểm xuất hiện | ở Đông Phi,Tây Á, Việt Nam | ở Đông Phi, Gia va, Bắc kinh, Thanh Hóa | ở hầu hết các châu lục |
1. Jim asked his girlfriend how many pairs of shoes does she have.
2. Peter asked Jane if she is going to London next week.
3. Mom asked my sister if she had done the laundry.
4. Jane asked Peter if his brother lived in London.
5. Jim asked his sister what was she doing now.
6. My classmate asked me if I enjoyed the party last night.
7. My friends always ask me what genre of music do I most.
8. My doctor asked me what had I done to cope with my work stress.
9. Jim asked me what did I often do if I was sad.
10. Jim asked me who did I run into yesterday.
\(Tacó:\left\{{}\begin{matrix}2Z+N=34\\N-Z=1\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}Z=11=P=E\\N=12\end{matrix}\right.\)
Bài 1 :
a) \(sin4x=sin\dfrac{\pi}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{\pi}{5}+k2\pi\\4x=\pi-\dfrac{\pi}{5}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{20}+k\dfrac{\pi}{2}\\x=\dfrac{\pi}{5}+k\dfrac{\pi}{2}\end{matrix}\right.\)
e) \(2sin\dfrac{x}{2}+\sqrt[]{3}=0\)
\(\Leftrightarrow sin\dfrac{x}{2}=-\dfrac{\sqrt[]{3}}{2}\)
\(\Leftrightarrow sin\dfrac{x}{2}=sin\left(-\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{2}=-\dfrac{\pi}{3}+k2\pi\\\dfrac{x}{2}=\pi+\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2\pi}{3}+k2\pi\\x=\dfrac{8\pi}{3}+k2\pi\end{matrix}\right.\)
m) \(\sqrt[]{3}tan2x-3=0\)
\(\Leftrightarrow tan2x=\sqrt[]{3}\)
\(\Leftrightarrow tan2x=tan\dfrac{\pi}{3}\)
\(\Leftrightarrow2x=\dfrac{\pi}{3}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)
Bạn đg rảnh đúng ko ,nếu rảnh thì ngồi nghĩ đi ,ai rảnh đâu nghĩ cho cậu
so long
but here is the answer
5.4230583e+21
not easy much, but visit my scratch tab pls
here is the link: https://scratch.mit.edu/