Tính A= 1+(3/2^3)+(4/2^4)+(5/2^5)+........+(100/2^100)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có :
A = 1 + 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100
2A = 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 + 2 101
A = 2A – A = ( 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 + 2 101 ) –( 1 + 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 )
= 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 + 2 101 – 1 - 2 - 2 2 - 2 3 - 2 4 - . . . - 2 99 - 2 100
= 2 101 - 1
Vậy A = 2 101 - 1
b, Ta có.
B = 5 + 5 3 + 5 5 + . . . + 5 97 + 5 99
5 2 B = 5 2 ( 5 + 5 3 + 5 5 + . . . + 5 97 + 5 99 )
25B = 5 3 + 5 5 + . . . + 5 97 + 5 99 + 5 101
25B – B = ( 5 3 + 5 5 + . . . + 5 97 + 5 99 + 5 101 ) – ( 5 + 5 3 + 5 5 + . . . + 5 97 + 5 99 )
24B = 5 3 + 5 5 + . . . + 5 97 + 5 99 + 5 101 – 5 - 5 3 - 5 5 - . . . - 5 97 - 5 99
24B = 5 101 - 5
B = 5 101 - 5 24 = 5 5 100 - 1 24
Vậy B = 5 5 100 - 1 24
Lời giải:
$A=(2+2^2)+(2^3+2^4)+....+(2^{99}+2^{100})$
$=2(1+2)+2^3(1+2)+...+2^{99}(1+2)$
$=2.3+2^3.3+...+2^{99}.3$
$=3(2+2^3+...+2^{99})\vdots 3$
Ta có đpcm.
Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{23.24.25}\)
\(\Rightarrow2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{23.24.25}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+....+\frac{1}{23.24}-\frac{1}{24.25}\)
\(=\frac{1}{1.2}-\left(\frac{1}{2.3}-\frac{1}{2.3}\right)-\left(\frac{1}{3.4}-\frac{1}{3.4}\right)-\left(\frac{1}{4.5}-\frac{1}{4.5}\right)-....-\left(\frac{1}{23.24}-\frac{1}{23.24}\right)-\frac{1}{24.25}\)
\(=\frac{1}{1.2}-\frac{1}{24.25}\)
\(=\frac{1}{2}-\frac{1}{600}=\frac{299}{600}\)
Vậy : \(A=\frac{299}{600}\)
Thời gian có hạn copy cái này hộ mình vào google xem nha: :
Link : https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 200 người nhận rồi. Mình là phụ trách
OK
cc
a; \(\dfrac{9}{27}\) + \(\dfrac{7}{-49}\)
= \(\dfrac{1}{3}\) - \(\dfrac{1}{7}\)
= \(\dfrac{7}{21}\) - \(\dfrac{3}{21}\)
= \(\dfrac{4}{21}\)
b; - \(\dfrac{12}{10}\) + \(\dfrac{-25}{30}\)
= - \(\dfrac{6}{5}\) - \(\dfrac{5}{6}\)
= -\(\dfrac{36}{30}\) - \(\dfrac{25}{30}\)
= \(\dfrac{-61}{30}\)
c; \(\dfrac{-20}{35}\) + \(\dfrac{-16}{-24}\)
= - \(\dfrac{4}{7}\) + \(\dfrac{2}{3}\)
= - \(\dfrac{12}{21}\) + \(\dfrac{14}{21}\)
= \(\dfrac{2}{21}\)
d; - \(\dfrac{21}{77}\) + \(\dfrac{10}{-35}\)
= - \(\dfrac{3}{11}\) - \(\dfrac{2}{7}\)
= - \(\dfrac{21}{77}\) - \(\dfrac{22}{77}\)
= - \(\dfrac{43}{77}\)
A = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{23.24.25}\)
= \(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{23.24.25}\right)\)
= \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{23.24}-\frac{1}{24.25}\right)\)
= \(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{24.25}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{600}\right)=\frac{1}{2}.\frac{299}{600}=\frac{299}{1200}\)
A=1+3/2^3+4/2^4+5/2^5+...100/2^100
1/2*A = 1/2 + 3/2^4 + 4/2^5 +....+ 99/2^100 + 100/2^101
A- A/2 = 1/2A =1/2 + 3/2^3 + 1/2^4 +...+1/2^100 - 100/2^101=
Tham khảo bài này nha
= [1/2+1/2^2 +1/2^3 +...+1/2^100] -100/2^101 (Do 3/2^3 = 1/2^2 +1/2^3)
=[1-(1/2)^101]/(1-1/2) -100/2^101 =
=(2^101 -1)/2^100 - 100/2^101
=> A= (2^101 -1)/2^99 - 100/2^100