cho S = 1 + 2 + 2^2 +.........+ 2^2005
hãy so sánh S với 5 nhân với 2^2004
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=\(1+2+2^2+2^3+...+2^{2005}\)
2S=\(2+2^2+2^3+2^4...+2^{2006}\)
2S-S=\(\left(2+2^2+2^3+...+2^{2006}\right)-\left(1+2+2^2+2^3+...+2^{2005}\right)\)
S=\(2^{2006}-1< 2^{2006}=2^{2004}.2^2=4.2^{2004}< 5.2^{2004}\)
\(\Rightarrow2^{2006}-1< 5.2^{2004}\)
Vậy \(\text{S}< 5.2^{2004}\)
S=1+2+22+...+22005
2.S=2+2^2+2^3+...+2^{2006}
2.S=2+22+23+...+22006
2S-S=S=\left(2+2^2+..+2^{2006}\right)-\left(1+2+2^2+..+2^{2005}\right)2S−S=S=(2+22+..+22006)−(1+2+22+..+22005)
S=2^{2006}-1S=22006−1
A=5.2^{2004}=\left(4+1\right).2^{2004}=2^2.2^{2004}+2^{2004}=2^{2006}+2^{2004}A=5.22004=(4+1).22004=22.22004+22004=22006+22004
S<A
Ta có: \(S=1+2+2^2+......+2^{2005}\left(1\right)\)
\(\Rightarrow2S=2+2^2+2^3+.....+2^{2006}\left(2\right)\)
Lấy (2)-(1) ta có: \(2S-S=\left(2+2^2+2^3+.......+2^{2006}\right)\)\(-\left(1+2+2^2+......+2^{2005}\right)\)
\(\Rightarrow S=2^{2006}-1\)
\(\Rightarrow S=2^2.2^{2004}-1\)
\(\Rightarrow S=4.2^{2004}-1\Rightarrow S< 5.2^{2004}\)
Ta có : S = 1 + 2 + 22 + ...... + 22015
=> 2S = 2 + 22 + ...... + 22016
=> 2S - S = 22016 - 1
=> S = 22016 - 1
Ta có: 22016 = 4.22014
Mà 4 < 5 nên S < 5.22014
Bài giải
\(S=1+2+2^2+...+2^{2005}\)
\(2S=2+2^2+2^3+...+2^{2006}\)
\(2S-S=S=2^{2006}-1=2^{2004}\cdot4-1< 5\cdot2^{2004}\)
\(\Rightarrow\text{ }S< 5\cdot2^{2004}\)
\(2S=2+2^2+...+2^{2005}\)
\(2S-S=\left(2-2\right)+\left(2^2-2^2\right)+....+2^{2005}-1\)
S = 22005 - 1 < 22005 = 2.22004 < 5.22004
Vậy S < 5.22004
S=1+2+2^2+...+2^2005
2S=2+2^2+2^3+...+2^2006
2S-S=2+2^2+2^3+...+2^2006-1-2-2^2-...-2^2005
S=2^2006-1 (1)
ta co 5.2^2004=(2.2+1).2^2004=4.2^2004+2^2004=2^2.2^2004+2^2004=2^2006+2^2004 (2)
tu (1),(2)=> S<5.2^2004
S=1+2+2^2+...+2^2005
2S=2+2^2+2^3+...+2^2006
2S-S=2+2^2+2^3+...+2^2006-1-2-2^2-...-2^2005
S=2^2006-1 (1)
ta co 5.2^2004=(2.2+1).2^2004=4.2^2004+2^2004=2^2.2^2004+2^2004=2^2006+2^2004 (2)
tu (1),(2)=> S<5.2^2004
=> 2S=2+2^2+...+2^2006
=> S=2S-S=(2+2^2+...+2^2006)-(1+2+2^2+...+2^2005)
=> S=2+2^2+...+2^2006-1-2-2^2-...-2^2005
=> S=2^2006-1=2^2004.4-1
Vì 2^2004.4-1<2^2004.5
=> S<2^2004.5
S=2^2006-1
5.2^2004=(2.2+1)2^2004=4.2^2004+2^2004=2^2006+2^2004
=>S<5.2^2004
ta có:\(S=1+2+2^2+...+2^{2005}\left(1\right)\)
\(2S=2+2^2+2^3+...+2^{2006}\left(2\right)\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{2006}\right)-\left(1+2+2^2+...+2^{2005}\right)\)
\(\Rightarrow S=2^{2006}-1\Rightarrow S=2^2.2^{2004}-1\Rightarrow S=4.2^{2004}-1\Rightarrow S< 5.2^{2004}\)