Chứng minh: 12^2n+1 + 11^n+2 chia hết cho 133
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11^(n+2) + 12^(2n+1) = 121. 11^n + 12 . 144^n
=(133-12) 11^n + 12 . 144^n= 133. 11^n +(144^n-11^n). 12
Ta có: 133. 11^n chia hết cho 133; 144^n - 11^n chia hết cho ( 144-11)
=> 144^n - 11^n chia hết cho 133
=> 11^(n+2)+12^(2n+1) chia hết cho 133
A=12^( 2n + 1 ) + 11^(n+2)
= 12 . 144^n + 121.11^n
= ( 133 - 11 ) . 144^n + 121.11^n
= 133. 144^n + 11( 144^n - 11^n )
Ta có 144^n - 11^n chia hết cho 144 - 11 = 133
=> 133. 144^n + 11( 144^n - 11^n ) chia hết cho 133
Vậy A chia hết cho 133 hay 12^(2n+1) + 11^(n+2) chia hết cho 133
11n + 2 + 122n + 1 = 121 . 11n + 12 . 144n
=(133 – 12) . 11n + 12 . 144n = 133 . 11n + (144n – 11n) . 12
Tacó: 133 . 11n chia hết 133; 144n – 11n chia hết (144 – 11)
144n – 11n chia hết 133 11n + 1 + 122n + 1
122n+1+112+n=144n.12+11n.121
144 đồng dư với 11(mod 133)
=>144n đồng dư với 11n(mod 133)
=>144n.12+11n.121 đồng dư với 11n.12+11n.121
=11n.133 đồng dư với 0(mod 133)
=>122n+1 + 11n+2 với 0(mod 133)
=>122n+1+11n+2 chia hết cho 133
=>đpcm
122n+1-11n+2 chia hết cho 133. Đề bài sai. VD n=1 thì 114 ko chia hết cho 133
\(11^{n+2}+12^{2n+1}=121.11^n+12.144^n\)
= ( 133 - 12 ) . \(11^n\)+ 12.\(144^n\)= 133 .11\(^n\)+ ( 144 \(^n-11^n\)) .12
Ta có : 133 . \(11^n\)chia hết cho 133 ; 144\(^n-11^n\)chia hết cho ( 144 - 11 )
=> 144\(^n-11^n\)chia hết cho 133
Ta có: 12
2n+1 + 11n+2
= 122n.12 + 11n.112
= 144n.12 + 11n.121
= 144n.12 - 11n.12 + 11n.121 + 11n.12
= 12.(144n - 11n) + 11n.(121 + 12)
= 12.(144n - 11n) + 11n.133
Do 144n - 11n luôn chia hết cho 144 - 11 = 133 => 12.(144n - 11n) chia hết cho 133; 11n.133 chia hết cho 133
=> 122n+1 + 11n+2 chia hết cho 133 ( đpcm)