Tìm tất cả các số nguyên dương n sao cho : \(\left(n!\right)^n⋮\left(n^2-1\right)!\) ( KS CL HSG tỉnh Vĩnh Phúc)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) Vì 2013 là số lẻ nên (\(1^{2013}+2^{2013}\)+....\(n^{2013}\)): (1+2+...+n)
Hay( \(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)) :\(\dfrac{n\left(n+1\right)}{2}\)
=>2(\(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)):n(n+1)(đpcm)
B)
Do 1 lẻ , \(2q^2\) chẵn nên p lẻ
p2−1⇔\(2q^2\)(p−1)(p+1)=\(2q^2\)
p lẻ nên p−1 và p+1đều chẵn ⇒(p−1)(p+1)⋮4
⇒\(q^2\):2 =>q:2 =>q=2
⇒\(q^2\)=2.2\(^2\)+1=9=>q=3
Chắc đúng vì hôm trước cô mik giải thik vLàm thử theo cách cổ truyền vậy -.-
Ta có : \(n^2+n+1=\left(m^2+m-3\right)\left(m^2-m+5\right)\)
\(\Leftrightarrow n^2+n+1=m^4+m^2+8m-15\)
\(\Leftrightarrow n^2+n+16-m^4-m^2-8m=0\)
Coi pt trên là pt bậc 2 ẩn n
Ta có : \(\Delta=4m^4+4m^2+32m-63\)
Pt có nghiệm nguyên khi \(\Delta\)là 1 số chính phương
Ta có \(\Delta=4m^4+4m^2+32m-63=\left(2m^2+2\right)^2-4\left(m-4\right)^2-3< \left(2m^2+2\right)^2\)
Giả sử m > 2 thì\(\Delta=\left(2m^2+1\right)^2+32\left(m-2\right)>\left(2m^2+1\right)^2\forall m>2\)
Khi đó \(\left(2m^2+1\right)^2< \Delta< \left(2m^2+2\right)^2\)
Như vậy \(\Delta\)không phải số chính phương (Vì giữa 2 số chính phương liên tiếp ko còn scp nào nữa)
Nên điều giả sử là sai .
Tức là\(m\le2\)
Mà \(m\inℕ^∗\)
\(\Rightarrow m\in\left\{1;2\right\}\)
*Với m = 1 thì pt ban đầu trở thành
\(n^2+n+1=\left(1+1-3\right)\left(1-1+5\right)\)
\(\Leftrightarrow n^2+n+1=-5\)
\(\Leftrightarrow\left(n+\frac{1}{2}\right)^2=-\frac{23}{4}\)
Pt vô nghiệm
*Với m = 2 thì pt ban đầu trở thành
\(n^2+n+1=\left(2^2+2-3\right)\left(2^2-2+5\right)\)
\(\Leftrightarrow n^2+n+1=21\)
\(\Leftrightarrow n^2+n-20=0\)
\(\Leftrightarrow\left(n-4\right)\left(n+5\right)=0\)
\(\Leftrightarrow n=4\left(Do\text{ }n\inℕ^∗\right)\)
Vậy pt ban đầu có nghiệm nguyên dương duy nhất (m;n) = (2;4)
Giúp : Cho \(\Delta\)ABC nhọn nội tiếp (O) , D là điểm trên cung BC không chứa A . Dựng hình bình hành ADCE . Gọi H , K là trực tâm của tam giác ABC , ACE ; P , Q là hình chiếu vuông góc của K trên các đường thẳng BC , AB và I là giao EK , AC
CMR: a,P ; I ; Q thẳng hàng
b, đường thẳng PQ đi qua trung điểm HK
TH1: \(n\) chẵn \(\Rightarrow n=2k\) (với \(k\in N\)*)
\(p=\dfrac{2k\left(2k+1\right)}{2}-1=2k^2+k-1=\left(k+1\right)\left(2k-1\right)\)
Do \(k+1\ge2>1\) nên p nguyên tố khi và chỉ khi: \(\left\{{}\begin{matrix}2k-1=1\\k+1\text{ là số nguyên tố}\end{matrix}\right.\)
\(2k-1=1\Rightarrow k=1\)
Khi đó \(p=2\) (thỏa mãn)
TH2: \(n\) lẻ \(\Rightarrow n=2k+1\) (với \(k\in N\))
\(p=\dfrac{\left(2k+1\right)\left(2k+2\right)}{2}-1=\left(2k+1\right)\left(k+1\right)-1=2k^2+3k=k\left(2k+3\right)\)
Do \(2k+3\ge3>1\) nên p là nguyên tố khi và chỉ khi \(\left\{{}\begin{matrix}k=1\\2k+3\text{ là số nguyên tố}\end{matrix}\right.\)
Khi \(k=1\Rightarrow p=5\) là số nguyên tố (thỏa mãn)
Vậy \(p=\left\{2;5\right\}\)
Trước hết ta dùng quy tắc tổ hợp chứng minh điều này: \(\dfrac{\left(n^2\right)!}{\left(n!\right)^{n+1}}\) luôn luôn là 1 số nguyên dương
Giả sử có \(n^2\) người, ta muốn chia họ vào n nhóm khác nhau, mỗi nhóm có đúng n người. Thứ tự của các nhóm và thứ tự mỗi người trong nhóm không quan trọng.
Xếp vị trí \(n^2\) người, có \(\left(n^2\right)!\) cách
Do trong các nhóm, vị trí mỗi người là không quan trọng nên mỗi nhóm bị lặp lại \(n!\) lần cách xếp (là hoán vị của n người trong nhóm). Như vậy, với n nhóm ta đã bị lặp lại: \(n!.n!...n!=\left(n!\right)^n\) lần xếp
Do vị trí của mỗi nhóm là không quan trọng, do đó khi xếp ta đã lặp lại thêm \(n!\) lần (là hoán vị của các nhóm với nhau)
Tổng cộng, ta đã lặp: \(\left(n!\right)^n.n!=\left(n!\right)^{n+1}\) lần xếp
Do đó, số cách xếp thực sự là: \(\dfrac{\left(n^2\right)!}{\left(n!\right)^{n+1}}\)
Số cách xếp vị trí hiển nhiên phải là 1 số nguyên dương, do đó, \(\dfrac{\left(n^2\right)!}{\left(n!\right)^{n+1}}\) cũng phải là 1 số nguyên dương
\(\Rightarrow\left(n^2\right)!=k.\left(n!\right)^{n+1}\) với k là số nguyên dương
Để \(\left(n!\right)^n⋮\left(n^2-1\right)!\Rightarrow\left(n!\right)^n=m.\left(n^2-1\right)!\) với m nguyên dương
\(\Rightarrow\left(n!\right)^n=m.\dfrac{\left(n^2\right)!}{n^2}=m.\dfrac{k.\left(n!\right)^{n+1}}{n^2}\)
\(\Rightarrow n!.k.m=n^2\)
\(\Rightarrow n=\left(n-1\right)!.k.m\ge\left(n-2\right)\left(n-1\right).k.m\ge\left(n-2\right)\left(n-1\right)\)
\(\Rightarrow n^2-4n+2\le0\)
\(\Rightarrow n\le2+\sqrt{2}\Rightarrow n=\left\{1;2;3\right\}\)
Thử lại chỉ có \(n=1\) thỏa mãn
Vậy \(n=1\) là số nguyên dương duy nhất thỏa mãn yêu cầu
Em cx ms nghĩ được 1 phần thôi ạ ; em dùng LTE ạ k biết có đúng k ?
Với mỗi số nguyên tố p và số nguyên dương q kí hiệu \(v_p\left(q\right)\) là số mũ đúng của p trong phân tích tiêu chuẩn ra thừa số nguyên tố của \(q!\)
C/m : n = 4 và n = p là số nguyên tố thì (n!)^n \(⋮̸\) \(\left(n^2-1\right)!\)
Thật vậy ; n = 4 thì \(v_2\left(4!\right)^4=4v_2\left(24\right)=12>11=v_2\left(4^2-1\right)!\)
=> (n!)^n \(⋮̸\) \(\left(n^2-1\right)!\)
CMTT với n = p
Tiếp theo ; ta c/m : n \(\ne4\) và \(n\ne p\) thì \(\left(n!\right)^n⋮\left(n^2-1\right)!\)
(Đoạn này e chưa ra)