K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2016

bấm vào chữ 0 đúng sẽ ra đáp án 

14 tháng 12 2016

ta có BI=\( \frac{2a}{3}\).nhận thấy góc giữa hai mp(B\(B^,C^,C\)) và đáy là góc giữa hai đường thẳng \(BB^,\) vàAB =30\(^o \)

Xét tam giác \(BB^,I\) vông tại I có:

tan(30)=\(\frac{B^, I}{IB}\)=\(\frac{h}{\frac{2a}{3}}\) →h=\(\frac{2\sqrt{3}a}{9}\) từ đó suy ra thể tích V=h.S=\(\frac{2\sqrt{3}a^3}{9}\)

15 tháng 12 2016

thaks ban nha. hj

3 tháng 1 2021

1) Cho tam giac ABC co A( -1;2); B(0;3); C(5;-2). Tim toa do chan duong cao ha tu dinh A cua tam giac ABC.

                                      Giải

Gọi tọa độ châ đường cao là H( a,b).

-Do AH vuông góc BC và BH vuông góc AC nên ta có:

  \(\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{BH}.\overrightarrow{AC}=0\end{matrix}\right.\)

<=> Hệ phương trình: \(\left\{{}\begin{matrix}5x-5y=-15\\6x-4y=-12\end{matrix}\right.< =>\left\{{}\begin{matrix}x=0\\y=3\end{matrix}\right.\)

Chọn A.

6 tháng 12 2017

a) Ta có:

\(5⋮n+1\)

\(\Rightarrow n+1\in U\left(5\right)=\left\{1;5\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=5\Rightarrow n=4\end{matrix}\right.\)

Vậy \(n\in\left\{0;4\right\}\)

b) Ta có:

\(15⋮n+1\)

\(\Rightarrow n+1\in U\left(15\right)=\left\{1;3;5;15\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=3\Rightarrow n=2\\n+1=5\Rightarrow n=4\\n+1=15\Rightarrow n=14\end{matrix}\right.\)

Vậy \(n\in\left\{0;2;4;14\right\}\)

c) Ta có:

\(n+3⋮n+1\)

\(\Rightarrow\left(n+1\right)+2⋮n+1\)

\(\Rightarrow2⋮n+1\)

\(\Rightarrow n+1\in U\left(2\right)=\left\{1;2\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=2\Rightarrow n=1\end{matrix}\right.\)

Vậy \(n\in\left\{0;1\right\}\)

d) Ta có:

\(4n+3⋮2n+1\)

\(\Rightarrow\left(4n+2\right)+1⋮2n+1\)

\(\Rightarrow2\left(2n+1\right)+1⋮2n+1\)

\(\Rightarrow1⋮2n+1\)

\(\Rightarrow2n+1\in U\left(1\right)=\left\{1\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow2n+1=1\)

\(\Rightarrow n=0\)

Vậy \(n=0\)