Tìm GTNN của (2x+1)^2+(x-1)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x+1\right)^2+\left(x-1\right)^2\)
\(=4x^2+4x+1+x^2-2x+1\)
\(=5x^2+2x+2\)
\(=\left(\sqrt{5}.x\right)^2+2.\sqrt{5}.x.\frac{\sqrt{5}}{5}+\left(\frac{\sqrt{5}}{5}\right)^2+\frac{9}{5}\)
\(=\left(\sqrt{5}x+\frac{\sqrt{5}}{5}\right)^2+\frac{9}{5}\)
Ta có
\(\left(\sqrt{5}.x+\frac{\sqrt{5}}{5}\right)^2\ge0\)
\(\Rightarrow\left(\sqrt{5}.x+\frac{\sqrt{5}}{5}\right)^2+\frac{9}{5}\ge\frac{9}{5}\)
Dấu " = " xảy ra khi \(\sqrt{5}.x+\frac{\sqrt{5}}{5}=0\Leftrightarrow x=-\frac{1}{5}\)
Vậy biểu thức đạt giá trị nhỏ nhất là \(\frac{9}{5}\) khi x=\(-\frac{1}{5}\)
\(x>0\)
\(C=x+\dfrac{1}{4x}+\dfrac{x}{\left(2x+1\right)^2}=\dfrac{4x^2+1}{4x}+\dfrac{x}{\left(2x+1\right)^2}\)
-Ta đặt \(A=T=4x^2+1;B=4x\) thì ta có:
\(A\ge B\Rightarrow A+T\ge B+T\) (do \(T>0\))\(\Rightarrow\dfrac{A+T}{B+T}\ge1\)
-Do đó: \(C=\dfrac{4x^2+1}{4x}+\dfrac{x}{\left(2x+1\right)^2}\ge\text{}\dfrac{4x^2+1+4x^2+1}{4x+4x^2+1}+\dfrac{x}{\left(2x+1\right)^2}=\dfrac{2\left(4x^2+1\right)}{\left(2x+1\right)^2}+\dfrac{8x}{\left(2x+1\right)^2}-\dfrac{7x}{\left(2x+1\right)^2}=\dfrac{2\left(2x+1\right)^2}{\left(2x+1\right)^2}-\dfrac{7x}{\left(2x+1\right)^2}=2-\dfrac{7x}{\left(2x+1\right)^2}\)
-Áp dụng BĐT AM-GM ta có:
\(C\ge2-\dfrac{7x}{\left(2x+1\right)^2}\ge2-\dfrac{7x}{4.2x}=2-\dfrac{7}{8}=\dfrac{9}{8}\)
\(C=\dfrac{9}{8}\Leftrightarrow x=\dfrac{1}{2}\)
-Vậy \(C_{min}=\dfrac{9}{8}\)
a) Vì \(\left(2x+\frac{1}{4}\right)^4\ge0\forall x\)
\(\Rightarrow A\ge1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x+\frac{1}{4}=0\Leftrightarrow x=\frac{-1}{8}\)
b) \(B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
\(B=3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\)
Vì \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\forall x\)
\(\Rightarrow B\le3\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow x=\frac{3}{10}\)
với mọi x thì (2x+1/4)4>=0 (lớn hơn hoặc bằng )
A=(2x+1/4)4-1>=-1
để A đạt GTNN thì (2x+1/4)4=0
2x+1/4=0 =>x=-1/8
\(M=x^2+2y^2+2xy-2x-3y+1\)
=> \(M=x^2+2x\left(y-1\right)+\left(y-1\right)^2-\left(y-1\right)^2+2y^2-3y+1\)
=> \(M=\left(x+y-1\right)^2-y^2+2y-1+2y^2-3y+1\)
=> \(M=\left(x+y-1\right)^2+y^2-y\)
=> \(M=\left(x+y-1\right)^2+y^2-2y\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\)
=> \(M=\left(x+y-1\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{1}{4}\)
Có \(\left(x+y-1\right)^2\ge0\)với mọi x, y
\(\left(y-\frac{1}{2}\right)^2\ge0\)với mọi y
=> \(M=\left(x+y-1\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\)với mọi x, y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-\frac{1}{2}=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\end{cases}}\)
KL: Mmin = \(\frac{-1}{4}\)<=> \(x=y=\frac{1}{2}\)
\(A=\left(2x+1\right)^2+\left(x-1\right)^2\)
Có: \(\left(2x+1\right)^2+\left(x-1\right)^2\ge0\)
Dấu = xảy ra khi: \(\hept{\begin{cases}2x+1=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}}\) ( k hợp lý => loại )
Ta xét: \(2x+1=0\Rightarrow A=\frac{1}{4}\)
\(x-1=0\Rightarrow A=16\)
Vì: \(\frac{1}{4}< 16\Rightarrow x=-\frac{1}{2}\)
Vậy: \(Min_A=\frac{1}{4}\) tại \(x=-\frac{1}{2}\)