cho 1 số tự nhiên , viết thêm vào bên phải số đã cho 1 chữ số khác 0 ta được 1 số mới lớn hơn số đẵ cho 2011 đơn vị . tìm số tự nhiên đã cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử chữ số được viết thêm vào bên phải số đã cho là chữ số \(a\), khi đó số mới bằng \(10\)lần số đã cho cộng thêm \(a\)đơn vị.
Hiệu của số mới và số đã cho là \(9\)lần số đã cho và \(a\)đơn vị.
Có \(2011=9\times223+4\)chia cho \(9\)dư \(4\)nên chữ số \(a\)là chữ số \(4\).
Số phải tìm là:
\(\left(2011-4\right)\div9=223\)
Viết thêm chữ số khác 0 vao bên phải một số thì số mới - chữ sô khác 0 bằng 10 lần sô ban đầu và lớn hơn sô ban đầu :
10 lần + chữ số khác 0 - 1 lần = 9 lần + chữ số khác 0
2005 : 9 = 222 dư 7
Nên số cần tìm là 222 và chữ số viết thêm là 7
Lời giải:
Gọi số ban đầu là $A$ và chữ số thêm vào là $b$ ($b$ là số tự nhiên có 1 chữ số)/
Theo bài ra ta có:
$\overline{Ab}-A=2033$
$A\times 10+b-A=2033$
$A\times 9+b=2033$
Suy ra $A\times 9< 2033$
Suy ra $A< \frac{2033}{9}< 226$
Lại thấy: $b<10$ nên $A\times 9> 2033-10$
Hay $A\times 9> 2023$
Suy ra $A> \frac{2023}{9}> 224$
Vậy $226> A> 224$ nên $A=225$
Vậy số tự nhiên đã cho là $225$
Gọi số thêm vào bên phải là \(a\) và số tự nhiên cần tìm là \(A\) ta có:
\(\overline{Aa}=A+11\)
\(\Leftrightarrow10A+a=A+11\)
\(\Leftrightarrow9A+a=11\)
\(\Rightarrow\)\(9A\le11\Rightarrow A=1\) hoặc \(A=0\)
Với \(A=1\Rightarrow9A+a=9+a=11\Leftrightarrow a=2\)
Với \(A=0\Rightarrow9A+a=0+a=11\Leftrightarrow a=11\)
Mà \(a\) là số có 1 chữ số khác 0 \(\Rightarrow a< 10\Rightarrow a\ne11\)
Vậy A=1
Khi viết thêm chữ số 2 vào bên phải của số đó thì ta được số mới lớn hơn số phải tìm là 326 đơn vị
Vậy số đó đã gấp 10 lần và 2 đơn vị
Coi số mới là 10 phần bằng nhau còn số cũ là 1 phần như thế
Hiệu số phần bằng nhau là
10-1=9(phần)
Số đó là
(326-2):9x1=36
Học tốt
gọi số cần tìm là ab.theo bài ra ta có:
ab6=276+ab
=>10.ab+6=276+ab
=>10.ab-ab=276-6
=>9.ab=270
=>ab=270:9
=>ab=30
vậy ab=30
Gọi số cần tìm là x
theo đề, ta có: 10x+6-x=321
=>9x=315
=>x=35
Gọi số đã cho là A, b là số viết thêm vào bên phải số đã cho
Ab - A = 2011
=> 10xA + b +A = 2011
=> 11xA +b = 2011
=> A = (2011-b):11
=> 2011-b = 2002 + 9 - b phải chia hết cho 11 mà 2002 chia hết cho 11 => 9-b phải chia hết cho 11 => b=9
=> A=(2011-9):11=182
Gọi số đã cho là a
số viết thêm vào là b
Ta có : ab-a=2011
10xa+b+a=2011
11a+b=2011
a =(2011-b):11
2011-b=2009+2-b chia hết cho 11
a=(2011-9):11=182
Vậy số đó là 182