K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

tôi mong các bn đừng làm như vậy nha

7 tháng 11 2017

Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web

4 tháng 5 2015

Ta có 1 = x+y+z = (x+y) +z

Áp dụng bđt Cauchy với 2 số dương x+y và z ta đc : \(1=\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\Rightarrow1^2\ge4\left(x+y\right)z\)

hay \(1\ge4\left(x+y\right)z\Rightarrow x+y\ge4\left(x+y\right)^2z\)(vì x+y >0) (*)

Ta lại có \(\left(x+y\right)^2\ge4xy\)(**)

Từ (*) và (**) => \(x+y\ge16xyz\Rightarrow\frac{x+y}{xyz}\ge16\)

Dấu = xảy ra <=> x = y ; x+y+z =1 và (x+y)/xyz = 16

Giải hệ này ta đc x = y = 1/4 và z = 1/2

7 tháng 5 2015

Ta có 1 = x+y+z = (x+y) +z

Áp dụng bđt Cauchy với 2 số dương x+y và z ta đc : $1=\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\Rightarrow1^2\ge4\left(x+y\right)z$1=(x+y)+z≥2√(x+y)z⇒12≥4(x+y)z

hay $1\ge4\left(x+y\right)z\Rightarrow x+y\ge4\left(x+y\right)^2z$1≥4(x+y)z⇒x+y≥4(x+y)2z(vì x+y >0) (*)

Ta lại có $\left(x+y\right)^2\ge4xy$(x+y)2≥4xy(**)

Từ (*) và (**) => $x+y\ge16xyz\Rightarrow\frac{x+y}{xyz}\ge16$x+y≥16xyz⇒x+yxyz ‍≥16

Dấu = xảy ra <=> x = y ; x+y+z =1 và (x+y)/xyz = 16

Giải hệ này ta đc x = y = 1/4 và z = 1/2

9 tháng 4 2017

có thể nhiều cách giải hãy chọn 1 cách

9 tháng 4 2017

khó hiểu

NV
2 tháng 7 2021

Không tồn tại min của T

Muốn biểu thức này tồn tại min thì cần thêm điều kiện ví dụ x;y;z>0

2 tháng 7 2021

với x,y,z<0

`=>` Min_T không tồn tại

Với x,y,z>0

Ta áp dụng bđt cosi cho 3 số dương:

`x+y+z>=3root{3}{xyz}`

Mà `x+y+z=xyz`

`=>xyz>=3root{3}{xyz}`

`<=>(xyz)^3>=27xyz`

Chia 2 vế cho `xyz>0` ta có:

`(xyz)^2>=27`

`<=>xyz>=3sqrt3`

Dấu "=" xảy ra khi `x=y=z`

Mặt khác`x+y+z=xyz`

`<=>3x=x^3`

`<=>x^2=3`

`<=>x=sqrt3`

`<=>x=y=z=sqrt3`

7 tháng 1 2018

A=x^3 +y^3 +z^3+ 2(x/y+z  +y/z+x  +z/x+y)  \(\ge x^3+y^3+z^3+2.\frac{3}{2}\)  (bạn vào tìm BĐT nesbit là sẽ cm cái đằng sau >= 3/2)

Áp dụng cô si \(x^3+y^3+z^3\ge3xyz=3\)

===> A\(\ge3+3=6\) khi x=y=z=1

20 tháng 6 2020

P min = 2 nhá tại (0;0;2).

Từ giả thiết suy ra \(x\le2\)

\(4=x^2+y^2+z^2+xyz\le x^2+y^2+z^2+2yz\le x^2+\left(y+z\right)^2+2x\left(y+z\right)=\left(x+y+z\right)^2\)

Vậy \(x+y+z\ge2\)

Min P=2 với (x,y,z)=(2;0;0) và các hoán vị

29 tháng 1 2022

Có \(P=\dfrac{x+z}{xyz}=\dfrac{1}{yz}+\dfrac{1}{xy}=\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{1}{y}.\dfrac{4}{x+z}\)

\(=\dfrac{4}{y\left(x+z\right)}=\dfrac{4}{y\left(4-y\right)}=\dfrac{4}{-y^2+4y}=\dfrac{4}{-\left(y-2\right)^2+4}\ge1\)

"=" xảy ra khi y = 2 ; x = 1 ; z = 1

29 tháng 1 2022

Giúp mình câu này với ah.

 

28 tháng 10 2020

a) Đặt \(\hept{\begin{cases}x+y-z=a\\y+z-x=b\\z+x-y=c\end{cases}\Rightarrow}x=\frac{a+c}{2};y=\frac{b+a}{2};z=\frac{c+b}{2}\)

Suy ra bất đẳng thức cần chứng minh tương đương với: \(\frac{a+b}{2}.\frac{b+c}{2}.\frac{c+a}{2}\ge abc\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge abc\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Áp dụng bất đẳng thức AM-GM: \(\hept{\begin{cases}a+b\ge2\sqrt{ab}\ge0\\b+c\ge2\sqrt{bc}\ge0\\c+a\ge2\sqrt{ca}\ge0\end{cases}\Rightarrow}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{\left(abc\right)^2}=8abc\)

Vật bất đẳng thức được chứng minh

Dấu "=" xảy ra khi \(a=b=c\Leftrightarrow x=y=z\)