Cho x+y+z=1
x,y,z>0
Tìm giá trị nhỏ nhất
M=x+y/xyz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 1 = x+y+z = (x+y) +z
Áp dụng bđt Cauchy với 2 số dương x+y và z ta đc : \(1=\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\Rightarrow1^2\ge4\left(x+y\right)z\)
hay \(1\ge4\left(x+y\right)z\Rightarrow x+y\ge4\left(x+y\right)^2z\)(vì x+y >0) (*)
Ta lại có \(\left(x+y\right)^2\ge4xy\)(**)
Từ (*) và (**) => \(x+y\ge16xyz\Rightarrow\frac{x+y}{xyz}\ge16\)
Dấu = xảy ra <=> x = y ; x+y+z =1 và (x+y)/xyz = 16
Giải hệ này ta đc x = y = 1/4 và z = 1/2
Ta có 1 = x+y+z = (x+y) +z
Áp dụng bđt Cauchy với 2 số dương x+y và z ta đc : $1=\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\Rightarrow1^2\ge4\left(x+y\right)z$1=(x+y)+z≥2√(x+y)z⇒12≥4(x+y)z
hay $1\ge4\left(x+y\right)z\Rightarrow x+y\ge4\left(x+y\right)^2z$1≥4(x+y)z⇒x+y≥4(x+y)2z(vì x+y >0) (*)
Ta lại có $\left(x+y\right)^2\ge4xy$(x+y)2≥4xy(**)
Từ (*) và (**) => $x+y\ge16xyz\Rightarrow\frac{x+y}{xyz}\ge16$x+y≥16xyz⇒x+yxyz ≥16
Dấu = xảy ra <=> x = y ; x+y+z =1 và (x+y)/xyz = 16
Giải hệ này ta đc x = y = 1/4 và z = 1/2
Không tồn tại min của T
Muốn biểu thức này tồn tại min thì cần thêm điều kiện ví dụ x;y;z>0
với x,y,z<0
`=>` Min_T không tồn tại
Với x,y,z>0
Ta áp dụng bđt cosi cho 3 số dương:
`x+y+z>=3root{3}{xyz}`
Mà `x+y+z=xyz`
`=>xyz>=3root{3}{xyz}`
`<=>(xyz)^3>=27xyz`
Chia 2 vế cho `xyz>0` ta có:
`(xyz)^2>=27`
`<=>xyz>=3sqrt3`
Dấu "=" xảy ra khi `x=y=z`
Mặt khác`x+y+z=xyz`
`<=>3x=x^3`
`<=>x^2=3`
`<=>x=sqrt3`
`<=>x=y=z=sqrt3`
A=x^3 +y^3 +z^3+ 2(x/y+z +y/z+x +z/x+y) \(\ge x^3+y^3+z^3+2.\frac{3}{2}\) (bạn vào tìm BĐT nesbit là sẽ cm cái đằng sau >= 3/2)
Áp dụng cô si \(x^3+y^3+z^3\ge3xyz=3\)
===> A\(\ge3+3=6\) khi x=y=z=1
Từ giả thiết suy ra \(x\le2\)
\(4=x^2+y^2+z^2+xyz\le x^2+y^2+z^2+2yz\le x^2+\left(y+z\right)^2+2x\left(y+z\right)=\left(x+y+z\right)^2\)
Vậy \(x+y+z\ge2\)
Min P=2 với (x,y,z)=(2;0;0) và các hoán vị
Có \(P=\dfrac{x+z}{xyz}=\dfrac{1}{yz}+\dfrac{1}{xy}=\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{1}{y}.\dfrac{4}{x+z}\)
\(=\dfrac{4}{y\left(x+z\right)}=\dfrac{4}{y\left(4-y\right)}=\dfrac{4}{-y^2+4y}=\dfrac{4}{-\left(y-2\right)^2+4}\ge1\)
"=" xảy ra khi y = 2 ; x = 1 ; z = 1
a) Đặt \(\hept{\begin{cases}x+y-z=a\\y+z-x=b\\z+x-y=c\end{cases}\Rightarrow}x=\frac{a+c}{2};y=\frac{b+a}{2};z=\frac{c+b}{2}\)
Suy ra bất đẳng thức cần chứng minh tương đương với: \(\frac{a+b}{2}.\frac{b+c}{2}.\frac{c+a}{2}\ge abc\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge abc\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Áp dụng bất đẳng thức AM-GM: \(\hept{\begin{cases}a+b\ge2\sqrt{ab}\ge0\\b+c\ge2\sqrt{bc}\ge0\\c+a\ge2\sqrt{ca}\ge0\end{cases}\Rightarrow}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{\left(abc\right)^2}=8abc\)
Vật bất đẳng thức được chứng minh
Dấu "=" xảy ra khi \(a=b=c\Leftrightarrow x=y=z\)
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
tôi mong các bn đừng làm như vậy nha
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web