Tính
a) \(100^2-99^2+98^2-97^2+...+2^2-1^2\)
b)\(\left(20^2+18^2+16^2+...+2^2\right)-\left(19^2+17^2+15^2+...+1^2\right)\)
c)\(\left(-1\right)^n.\left(-1\right)^{2n+1}\left(-1\right)^{n+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Áp dụng công thức (a - b).(a+ b) = a.(a+ b) - b.(a+ b) = a2 + ab - ab - b2 = a2 - b2
Ta có
\(M=100^2-99^2+98^2-97^2+...+2^2-1^2\)
M = (100 - 99)(100 + 99) + (98 - 97).(98 + 97) + ...+ (2 - 1)(2+1)
= 100 + 99 + 98 + 97 + ...+ 2 + 1
= (1+100).100 : 2
= 5050
b)
N = (202 - 192 ) + (182 - 172 ) + ...+ (42 - 32 ) + (22 - 12 )
= (20 - 19).(20 + 19) + (18 - 17)(18 + 17) +...+ (4 -3)(4 +3) + (2-1)(2+1) = 39 + 35 + ...+ 7 + 3
N = (39 + 3).10 : 2 = 210
a/ A = 1002 - 992 + 982 -...+22 - 12
= (1002 - 992) + (982 - 972) +...+ (22 - 12)
= 199 + 195 + 191 + ... + 1
= (\(\frac{199-1}{4}+1\))(\(\frac{199+1}{2}\)) = 5050
b/ Y chang câu a luôn nha
c/ \(C=\frac{780^2-220^2}{125^2+150.125+75^2}=\frac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}\)
\(=\frac{560.1000}{200^2}=14\)
a) \(127^2+146.127+73^2=127^2+2.73.127+73^2=\left(127+73\right)^2=40000\)b) \(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)=18^8-\left(18^8-1\right)=1\)
c) \(100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=100+99+98+97+...+2+1\)
\(=\dfrac{100\left(100+1\right)}{2}=5050\)
d) \(\left(20^2+18^2+16^2+...+4^2+2^2\right)-\left(19^2+17^2+15^2+...+3^2+1^2\right)\) \(=20^2-19^2+18^2-17^2+16^2-15^2+...+4^2-3^2+2^2-1^2\)
\(=\left(20-19\right)\left(20+19\right)+\left(18-17\right)\left(18+17\right)+...+\left(2-1\right)\left(2+1\right)\)\(=20+19+18+17+...+2+1\)
\(=\dfrac{20\left(20+1\right)}{2}=210\)
e) \(\dfrac{780^2-220^2}{125^2+150.125+75^2}\)
\(=\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560.1000}{200}=2800\)
a) Áp dụng hằng đẳng thức ta đc:
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(100+99\right)\left(100-99\right)+\left(98-97\right)\left(98+87\right)+...+\left(2+1\right)\left(2-1\right)\)
\(=199+195+191+...+3\)
\(=\left[\left(199-3\right):4+1\right]\cdot\left(199+3\right):2=50\cdot101=5050\)
a) Áp dụng hằng đẳng thức ta đc:
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(100+99\right)\left(100-99\right)+\left(98-97\right)\left(98+87\right)+...+\left(2+1\right)\left(2-1\right)\)
\(=199+195+191+...+3\)
\(=\left[\left(199-3\right):4+1\right]\cdot\left(199+3\right):2=50\cdot101=5050\)
b) mk nghĩ bước đầu tiên là phải bỏ ngoặc:
\(=20^2+18^2+16^2+...4^2+2^2-19^2-17^2-....-3^2-1^2\)
\(=\left(20^2-19^2\right)+\left(18^2-17^2\right)+...+\left(4^2-3^2\right)-1^2\)
\(=\left(20+19\right)\left(20-19\right)+\left(18+17\right)\left(18-17\right)+...+\left(4-3\right)\left(4+3\right)-1\)
\(=\left(39+35+31+...+7\right)-1\)
\(=\left(\left[\left(39-7\right):4+1\right]\cdot\left(39+7\right):2\right)-1=207-1=206\)
a) 1002-992+....+22-12
=(100+99)(100-99)+(98+97)(98-97)+...+(2+1)(2-1)
=100+99+98+...+2+1
b) bieu thuc tren =
202-192+182-172+...+22-12
tinh tuong tu cau a
a)\(T=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)
ta có \(2+1=2^2-1\)
\(T=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)
\(T=\left(2^4-1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)
\(T=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(T=2^{32}-1\)
bạn ơi nơi chổ mấy cái \(\left(2^2-1\right)\left(2^2+1\right)\)là nhân đa thức lại nha
b)
\(U=100^2-99^2+98^2-97^2+...+4^2-3^2+2^2-1^2\)
\(U=-1^2+2^2-3^2+4^2-...-97^2+98^2-99^2+100^2\)
\(U=2^2-1^2+4^2-3^2+...+98^2-97^2+100^2-99^2\)
\(U=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(100-99\right)\left(100+99\right)\)(dùng hằng đẳng thức sô 3 nha)
\(U=3+7+...+199\)
\(U=1+2+3+\text{4+...+99+100}\)
số số hạng của U là :\(\left(100-1\right):1+1=100\) (số hạng)
tổng số số hạng của U là : \(\frac{\left(100+1\right).100}{2}=5050\)
à bạn coi lại cái đề nha đoạn sau hình như thiếu 2^2 thì phải