Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
N = (202 - 192) + (182 - 172) + ...+ (42 - 32) + (22 - 12)
= (20 - 19).(20 + 19) + (18 - 17)(18 + 17) +...+ (4 -3).(4 +3) + (2-1)(2+1)
= 39 + 35 + ...+ 7 + 3
Số số hạng: (39 - 3): 4 + 1 = 10
=> N = (39 + 3).10 : 2 = 210
+) Ở đây: sd công thức: (a-b).(a+b) = a2 - b2
câu g)
\(G=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{121}-1\right).\)
\(=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}...\cdot\frac{120}{121}\)
\(=\frac{3.\left(2.4\right).\left(3.5\right)...\left(10.12\right)}{2.2.3.3.4.4.5.5....11.11}\)
\(=\frac{12}{3}=4\)
=>\(-B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2012}\right)\)
=\(\frac{1}{2}.\frac{2}{3}...\frac{2011}{2012}=\frac{1}{2012}\)
Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)
\(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)
\(=100.\frac{2}{101}=\frac{200}{101}\)
a)
Áp dụng công thức (a - b).(a+ b) = a.(a+ b) - b.(a+ b) = a2 + ab - ab - b2 = a2 - b2
Ta có
\(M=100^2-99^2+98^2-97^2+...+2^2-1^2\)
M = (100 - 99)(100 + 99) + (98 - 97).(98 + 97) + ...+ (2 - 1)(2+1)
= 100 + 99 + 98 + 97 + ...+ 2 + 1
= (1+100).100 : 2
= 5050
b)
N = (202 - 192 ) + (182 - 172 ) + ...+ (42 - 32 ) + (22 - 12 )
= (20 - 19).(20 + 19) + (18 - 17)(18 + 17) +...+ (4 -3)(4 +3) + (2-1)(2+1) = 39 + 35 + ...+ 7 + 3
N = (39 + 3).10 : 2 = 210
Bó tay chưa học đến ahihi