Tìm m để 2 đường thẳng y = 2x + m và y = x + m - 3 cắt nhau tại một điểm thuộc trục hoành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét phương trình hoành độ giao điểm của (d) và (d’):
2 x + m + 3 = − 4 x – m – 2 ⇔ 6 x = − 2 m – 5 ⇔ x = − 2 m − 5 6
⇔ y = 2 . − 2 m − 5 6 + m + 3 = m + 4 3
Ta có d cắt d’ tại điểm thuộc trục hoành nên y = m + 4 3 = 0 ⇒ m = − 4
Vậy m = − 4
Đáp án cần chọn là: A
a.
Để đường thẳng đi qua A
\(\Rightarrow2.1-m^2-m=0\Leftrightarrow m^2+m-2=0\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
b.
Hoành độ giao điểm của (d) với trục hoành:
\(2x+4=0\Rightarrow x=-2\Rightarrow\) hai đường thẳng cắt nhau tại (-2;0)
(d') đi qua (-2;0) nên:
\(-2+m-2=0\Rightarrow m=4\)
Thay y=0 vào y=2x+3, ta được:
2x+3=0
hay \(x=-\dfrac{3}{2}\)
Thay \(x=-\dfrac{3}{2}\) và y=0 vào y=(2m+3)x+m-1, ta được:
\(-\dfrac{3}{2}\left(2m+3\right)+m-1=0\)
\(\Leftrightarrow-3m-\dfrac{9}{2}+m-1=0\)
\(\Leftrightarrow-2m=\dfrac{11}{2}\)
hay \(m=-\dfrac{11}{4}\)
\(PTHDGD:2x+m=x-2m+3\)
Mà 2 đt cắt tại 1 điểm trên trục tung nên \(x=0\)
\(\Leftrightarrow m=3-2m\\ \Leftrightarrow m=1\)
Vì (d1) và (d2) cắt nhau tại 1 điểm trên trục hoành nên tung độ y = 0
Thay y=0 vào (d1) ta tìm được x = -3/2
Thay y=0 và x=-3/2 vào (d2) ta tìm được m = 4/3
Vậy với m = 4/3 thì (d1) và (d2) cắt nhau tại một điểm trên trục hoành
Phương trình hoành độ giao điểm là:
x-2m+1=2x-3
=>-x=-3+2m-1
=>-x=2m-4
=>x=-2m+4
Để hai đường thẳng cắt nhau tại một điểm nằm ở phía trên trục hoành thì y>0
=>2x-3>0
=>x>3/2
Để hai đường thẳng cắt nhau tại một điểm trên trục hoành thì m=m-3
hay \(m\in\varnothing\)