cho a,b,c>0. CMR a/c+b+b/a+c+c/a+b>=a/1+a^2+b/1+b^3+c/1+c^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/ Áp dụng bất đẳng thức AM-GM, ta có :
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)
\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)
\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)
Cộng 3 vế của BĐT trên ta có :
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)
Do đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
a/ Biến đổi tương đương:
\(\Leftrightarrow a^2c+ab^2+bc^2\ge b^2c+ac^2+a^2b\)
\(\Leftrightarrow a^2c-a^2b+ab^2-ac^2+bc^2-b^2c\ge0\)
\(\Leftrightarrow a^2\left(c-b\right)-\left(ab+ac\right)\left(c-b\right)+bc\left(c-b\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a^2+bc-ab-ac\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a\left(a-b\right)-c\left(a-b\right)\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(c-a\right)\left(b-a\right)\ge0\) luôn đúng do \(a\le b\le c\)
Vậy BĐT ban đầu đúng
Câu 2: Đề sai, cho \(a=b=c=1\Rightarrow3\ge6\) (sai)
Đề đúng phải là \(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(VT=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+ac+bc}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Câu 3: Không phải với mọi x; y với mọi \(x;y\) dương
Biến đổi tương đương do mẫu số vế phải dương nên ta được quyền nhân chéo:
\(\Leftrightarrow3x^3\ge\left(2x-y\right)\left(x^2+xy+y^2\right)\)
\(\Leftrightarrow3x^3\ge2x^3+x^2y+xy^2-y^3\)
\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)
\(VT=\dfrac{a}{c+b}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=\dfrac{a}{c+b}+1+\dfrac{b}{a+c}+1+\dfrac{c}{a+b}-3=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{a+c}+\dfrac{a+b+c}{a+b}-3=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)-3\)
-Áp dụng BĐT Caushy Schwarz cho 3 số dương ta có:
\(VT\ge\left(a+b+c\right).\dfrac{\left(1+1+1\right)^2}{a+b+b+c+c+a}-3=\left(a+b+c\right).\dfrac{9}{2\left(a+b+c\right)}-3=\dfrac{9}{2}-3=\dfrac{3}{2}\left(1\right)\)
\(VP=\dfrac{2.\left(\dfrac{a}{a^2+1}+\dfrac{1}{2}+\dfrac{b}{b^2+1}+\dfrac{1}{2}+\dfrac{c}{c^2+1}+\dfrac{1}{2}-\dfrac{3}{2}\right)}{2}=\dfrac{\dfrac{2a}{a^2+1}+1+\dfrac{2b}{b^2+1}+1+\dfrac{c}{c^2+1}-3}{2}=\dfrac{\dfrac{a^2+2a+1}{a^2+1}+\dfrac{b^2+2b+1}{b^2+1}+\dfrac{c^2+2c+1}{c^2+1}-3}{2}=\dfrac{\dfrac{\left(a+1\right)^2}{a^2+1}+\dfrac{\left(b+1\right)^2}{b^2+1}+\dfrac{\left(c+1\right)^2}{c^2+1}-3}{2}\)-Áp dụng BĐT Caushy ta có:
\(VP\le\dfrac{\dfrac{2\left(a^2+1\right)}{a^2+1}+\dfrac{2\left(b^2+1\right)}{b^2+1}+\dfrac{2\left(c^2+1\right)}{c^2+1}-3}{2}=\dfrac{2+2+2-3}{2}=\dfrac{3}{2}\left(2\right)\)
-Từ (1) và (2) ta có:
\(VT\ge\dfrac{3}{2}\ge VP\Rightarrow\dfrac{a}{c+b}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\ge\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}+\dfrac{c}{c^2+1}\left(đpcm\right)\)
-Dấu bằng xảy ra \(\Leftrightarrow a=b=c=1\)
-Bạn không hiểu chỗ nào thì nói cho mình nhé!